Advertisement

Acta Mechanica Solida Sinica

, Volume 29, Issue 5, pp 479–489 | Cite as

SH waves in (1 – x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 Piezoelectric Layered Structures Loaded with Viscous Liquid

  • Guoquan Nie
  • Jinxi Liu
  • Yanping Kong
  • Xueqian Fang
Article

Abstract

The velocity dispersion and attenuation of shear horizontal (SH) waves in a layered piezoelectric structure loaded with viscous liquid is studied, where the (1 — x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 [PMN-xPT] single crystal is chosen as the piezoelectric layer. The PMN-xPT is being polarized along [011]c and [001]c so that the macroscopic symmetries are mm 2 and 4 mm, respectively. For the nonconductive liquid, the electrically open and shorted conditions at the interface between the liquid and the piezoelectric layer are considered. The phase velocity equations are derived analytically. The effects of the electrically boundary condition, the viscous coefficient and mass density of liquid as well as the thickness of the PMN-xPT layer on the phase velocity and attenuation are graphically illustrated. The results show that the phase velocity for the [011]c polarized PMN-0.29PT is much smaller than that for the [001]c polarized PMN-0.33PT, and the effects of viscous coefficient and piezoelectric layer thickness on the phase velocity for the [011]c case are stronger than that for the [001]c case. In addition, the electrical boundary conditions have an obvious influence on the propagation behaviors. These results can be useful for the designs and applications of acoustic wave devices and liquid biosensors.

Key Words

PMN-xPT single crystal piezoelectric material SH wave viscous liquid phase velocity attenuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andle, J.C. and Vetelino, J.F., Acoustic wave biosensors. Sensors and Actuators A: Physical, 1994, 44(3): 167–176.CrossRefGoogle Scholar
  2. 2.
    Kovacs, G., Vellekoop, M.J., Haueis, R., Lubking, G.W. and Venema, A., A Love wave sensor for (bio)chemical sensing in liquids. Sensors and Actuators A: Physical, 1994, 43(1–3): 38–43.CrossRefGoogle Scholar
  3. 3.
    Jakoby, B. and Vellekoop, M.J., Properties of Love waves: applications in sensors. Smart Materials and Structures, 1997, 6(6): 668–679.CrossRefGoogle Scholar
  4. 4.
    Li, N., Qian, Z.H. and Yang, J.S., Effects of nonlinearity on transient processes in AT-cut quartz thickness-shear resonators. Acta Mechanica Solida Sinica, 2015, 28(4): 347–352.CrossRefGoogle Scholar
  5. 5.
    Yang, C.H. and Shue, C.J., Guided wave propagating in a piezoelectric plate immersed in a conductive fluid. NDT and E International, 2001, 34(3): 199–206.CrossRefGoogle Scholar
  6. 6.
    Li, L. and Wei, P.J., The direction dependence of surface wave speed at the surface of magneto-electro-elastic half-space. Acta Mechanica Solida Sinica, 2015, 28(1): 102–110.CrossRefGoogle Scholar
  7. 7.
    Zhang, C., Caron, J.J. and Vetelion, J.F., The Bleustein-Gulyaev wave for liquid sensing applications. Sensors and Actuators, B: Chemical, 2001, 76(1–3): 64–68.CrossRefGoogle Scholar
  8. 8.
    Kielczyński, P., Pajewski, W., Szalewski, M. and Balcerzak, A., Measurement of the shear storage modulus and viscosity of liquids using the Bleustein-Gulyaev wave. Review of Scientific Instruments, 2004, 75(7): 2362–2367.CrossRefGoogle Scholar
  9. 9.
    Lee, Y.C. and Kuo, S.H., Leaky Lamb wave of a piezoelectric plate subjected to conductive fluid loading: Theoretical analysis and numerical calculation. Journal of Applied Physics, 2006, 100(7): 073519.CrossRefGoogle Scholar
  10. 10.
    McMullan, C., Mehta, H., Gizeli, E. and Lowe, C.R., Modeling of the mass sensitivity of the Love wave device in the presence of a viscous liquid. Journal of Physics D: Applied Physics, 2000, 33(23): 3053–3059.CrossRefGoogle Scholar
  11. 11.
    Wu, T.T. and Chang, M.P., Surface acoustic waves in layered piezoelectric medium loaded with viscous liquid. Japanese Journal of Applied Physics Part 1: Regular Papers and Short Notes and Review Papers, 2002, 41(8): 5451–5457.CrossRefGoogle Scholar
  12. 12.
    Du, J.K., Xian K, Yong, Y.K. and Wang, J., SH-SAW propagation in layered functionally graded piezoelectric material structures loaded with viscous liquid. Acta Mechanica, 2010, 212(3–4): 271–281.CrossRefGoogle Scholar
  13. 13.
    Du, J.K., Xian, K., Wang, J. and Yong, Y.K., Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid. Acta Mechanica Solida Sinica, 2008, 21(6): 542–548.CrossRefGoogle Scholar
  14. 14.
    Guo, F.L. and Sun, R., Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid. International Journal of Solids and Structures, 2008, 45(13): 3699–3710.CrossRefGoogle Scholar
  15. 15.
    Qian, Z.H., Jin, F., Li, P. and Hirose, S., Bleustein-Gulyaev waves in 6 mm piezoelectric materials loaded with a viscous liquid layer of finite thickness. International Journal of Solids and Structures, 2010, 47(25–26): 3513–3518.CrossRefGoogle Scholar
  16. 16.
    Sun, E.W. and Cao, W.W., Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Progress in Materials Science, 2014, 65: 124–210.CrossRefGoogle Scholar
  17. 17.
    Han, J.P. and Cao, W.W., Interweaving domain configurations in [001]-poled rhombohedral phase 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 single crystals. Applied Physics Letters, 2003, 83(10): 2040–2042.CrossRefGoogle Scholar
  18. 18.
    Park, S.E. and Shrout, T.R., Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44(5): 1140–1147.CrossRefGoogle Scholar
  19. 19.
    Liu, T. and Lynch, O.S., Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: Measurements and modeling. Acta Materialia, 2003, 51(2): 407–416.CrossRefGoogle Scholar
  20. 20.
    Chen, C.W., Zhang, R., Chen, H. and Cao, W.W., Guided wave propagation in 0.67Pb(Mg1/3Nb2/3)O30.33PbTiO3 single crystal plate poled along [001]c. Applied Physics Letters, 2007, 91(10): 102907.Google Scholar
  21. 21.
    Chen, C.W., Zhang, R. and Cao, W.W., Theoretical study on guided wave propagation in (1—x)Pb (Mg1/3Nb2/3)O3xPbTiO3 (x=0.29 and 0.33) single crystal plates. Journal of Physics D: Applied Physics, 2009, 42(9): 095411.Google Scholar
  22. 22.
    Chen, C.W. and Xiang, Y., Crossing characteristics of lamb wave modes in [001]c and [011]c polarized Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal plates. Physica B: Condensed Matter, 2012, 407(7): 1099–1103.CrossRefGoogle Scholar
  23. 23.
    Li, X.M., Zhang, R., Huang, N.X., Lü, T.Q. and Cao, W.W., Surface acoustic wave propagation properties in 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystal poled along [111]c. Applied Physics Letters, 2009, 95(24): 242906.Google Scholar
  24. 24.
    Li, X.M., Zhang, R., Huang, N.X., Lü, T.Q. and Cao, W.W., Surface acoustic wave propagation in Y- and Z-cut 0.67PbMgNbO30.33PbTiO3 single crystals. Journal of Applied Physics, 2009, 106(5): 054110.Google Scholar
  25. 25.
    Li, X.M., Zhang, R., Huang, N.X., Lii, T.Q. and Cao, W.W., Surface acoustic wave propagation in relaxor-based ferroelectric single crystals 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 poled along [011]c. Chinese Physics Letters, 2012, 29(2): 24302.Google Scholar
  26. 26.
    Huang, N.X., Lü, T.Q., Zhang, R. and Cao, W.W., High sensitivity gravimetric sensor made of carbon fiber epoxy composite on Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal substrate. Applied Physics Letters, 2013, 103(5): 053507.Google Scholar
  27. 27.
    Huang, N.X., Lü, T.Q., Zhang, R. and Cao, W.W., High sensitivity gravimetric sensor made of unidirectional carbon fiber epoxy composite on (1—x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystal substrate. Chinese Physics B, 2014, 23(11): 117704.Google Scholar
  28. 28.
    Huang, N.X., Lü, T.Q., Wang, Y.L., Zhang, R. and Cao, W.W., Guided wave propagation in a gold electrode film on a Pb(Mg1/3Nb2/3)O333%PbTiO3 ferroelectric single crystal substrate. Chinese Physics Letters, 2014, 31(10): 104302.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2016

Authors and Affiliations

  • Guoquan Nie
    • 1
  • Jinxi Liu
    • 2
  • Yanping Kong
    • 2
  • Xueqian Fang
    • 2
  1. 1.School of Mechanical EngineeringShijiazhuang Tiedao UniversityShijiazhuangChina
  2. 2.Department of Engineering MechanicsShijiazhuang Tiedao UniversityShijiazhuangChina

Personalised recommendations