Advertisement

Acta Mechanica Solida Sinica

, Volume 29, Issue 5, pp 455–467 | Cite as

A Theoretical Model for Characterizing the Internal Contact of the CICC Strands under Axial Strain

  • Shuai Dong
  • Ze Jing
  • Huadong Yong
  • Youhe Zhou
Article

Abstract

A theoretical model is proposed to calculate the internal contact distributions and contact forces of a 3×4×4×4 twisted Nb3Sn cable under applied axial strain. The critical current density reduction of the whole cable can be calculated. The thin rod theory is employed to analyze the mechanical behavior of each strand. According to the regular helical structure, the contact distribution of each strand is obtained, and the contact force in the cable is analyzed. At last, a prediction about the critical current density of the twisted cable is made. The results show that decreasing the pitch length can reduce the contact forces between strands.

Key Words

axial strain superconducting strand contact thin rod theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciazynski, D., Review of Nb3Sn conductors for ITER. Fusion Engineering and Design, 2007, 82: 488–497.CrossRefGoogle Scholar
  2. 2.
    Mitchell, N., Summary, assessment and implications of the ITER model coil test results. Fusion Engineering and Design, 2003, 66: 971–993.CrossRefGoogle Scholar
  3. 3.
    Nijhuis, A., Ilyin, Y., Wessel, S., Krooshoop, E., Feng, L. and Miyoshi, Y., Summary of ITER TF strand testing under axial strain, spatial periodic bending and contact stress. Applied Superconductivity, IEEE Transactions on, 2009, 19: 1516–1520.CrossRefGoogle Scholar
  4. 4.
    Mitchell, N., Bessette, D., Gallix, R., Jong, C., Knaster, J., Libeyre, P., Sborchia, C. and Simon, F., The ITER magnet system. Applied Superconductivity, IEEE Transactions on, 2008, 18: 435–440.CrossRefGoogle Scholar
  5. 5.
    Nijhuis, A., van den Eijnden, N.C., IIyin, Y., van Putten, E.G., Veening, G.J.T., Wessel, W.A.J., den Ouden, A. and ten Kate, H.H.J., Impact of spatial periodic bending and load cycling on the critical current of a Nb3Sn strand. Superconductor Science and Technology, 2005, 18(12): S273.CrossRefGoogle Scholar
  6. 6.
    Shikov, A., Nikulin, A., Silaev, A., Vorobieva, A., Pantsyrnyi, V., Vedernikov, G., Salunin, N. and Sudiev, S., Development of the superconductors for ITER magnet system. Journal of Nuclear Materials, 1998, 258: 1929–1934.CrossRefGoogle Scholar
  7. 7.
    Ulbricht, A., Duchateau, J., Fietz, W., Ciazynski, D., Fillunger, H., Fink, S., Heller, R., Maix, R., Nicollet, S. and Raff, S., The ITER toroidal field model coil project. Fusion Engineering and Design, 2005, 73(2): 189–327.CrossRefGoogle Scholar
  8. 8.
    Zhu, J.Y., Luo, W., Zhou, Y.H. and Zheng, X.J., Contact mechanical characteristics of Nb3Sn strands under transverse electromagnetic loads in the CICC cross-section. Superconductor Science and Technology, 2012, 25(12): 125011.CrossRefGoogle Scholar
  9. 9.
    Mitchell, N., Operating strain effects in Nb3Sn cable-in-conduit conductors. Superconductor Science and Technology, 2005, 18(12): S396.CrossRefGoogle Scholar
  10. 10.
    Nijhuis, A., Ilyin, Y. and Abbas, W., Axial and transverse stress-strain characterization of the EU dipole high current density Nb3Sn strand. Superconductor Science and Technology, 2008, 21(6): 065001.Google Scholar
  11. 11.
    Nijhuis, A., Van Lanen, E.P.A. and Rolando, G., Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction. Superconductor Science and Technology, 2012, 25(1): 015007.CrossRefGoogle Scholar
  12. 12.
    Nijhuis, A., A solution for transverse load degradation in ITER Nb3Sn CICCs: verification of cabling effect on Lorentz force response. Superconductor Science and Technology, 2008, 21(5): 054011.Google Scholar
  13. 13.
    Mitchell, N., Mechanical and magnetic load effects in Nb3Sn cable-in-conduit conductors. Cryogenics, 2003, 43(3): 255–270.CrossRefGoogle Scholar
  14. 14.
    Nijhuis, A. and Ilyin, Y., Transverse load optimization in Nb3Sn CICC design; influence of cabling, void fraction and strand stiffness. Superconductor Science and Technology, 2006, 19(9): 945.CrossRefGoogle Scholar
  15. 15.
    Nijhuis, A. and Ilyin, Y., Transverse cable stiffness and mechanical losses associated with load cycles in ITER Nb3Sn and NbTi CICCs. Superconductor Science and Technology, 2009, 22(5): 055007.CrossRefGoogle Scholar
  16. 16.
    Nijhuis, A., Ilyin, Y., Abbas, W., ten Haken, B. and ten Kate, H.H.J, Performance of an ITER CS1 model coil conductor under transverse cyclic loading up to 40,000 cycles. Applied Superconductivity, IEEE Transactions on, 2004, 14(2): 1489–1494.CrossRefGoogle Scholar
  17. 17.
    Nijhuis, A., Noordman, N.H., ten Kate, H.H., Mitchell, N. and Bruzzone, P., Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by transverse cyclic loading. III. Mechanical properties. Applied Superconductivity, IEEE Transactions on, 1999, 9(2): 165–168.CrossRefGoogle Scholar
  18. 18.
    Ekin, J.W., Effect of stress on the critical current of Nb3Sn multifilamentary composite wire. Applied Physics Letters, 1976, 29(3): 216–219.CrossRefGoogle Scholar
  19. 19.
    Ekin, J., Filamentary A15 superconductors, Springer, 1980.CrossRefGoogle Scholar
  20. 20.
    Ekin, J., Effect of transverse compressive stress on the critical current and upper critical field of Nb3Sn. Journal of Applied Physics, 1987, 62(12): 4829–4834.CrossRefGoogle Scholar
  21. 21.
    Mitchell, N., Devred, A., Larbalestier, D.C., Lee, P.J., Sanabria, C. and Nijhuis, A., Reversible and irreversible mechanical effects in real cable-in-conduit conductors. Superconductor Science and Technology, 2013, 26(11): 114004.Google Scholar
  22. 22.
    Nijhuis, A., Pompe van Meerdervoort, R.P., Krooshoop, H.J.G., Wessel, W.A.J., Zhou, C., Rolando, G., Sanabria, C., Lee, P.J., Larbalestier, D.C., Devred, A., Vostner, A., Mitchell, N., Takahashi, Y., Nabara, Y., Boutboul, T., Tronza, V. and Park, S.H., The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands. Superconductor Science and Technology, 2013, 26(8): 084004.CrossRefGoogle Scholar
  23. 23.
    Mitchell, N., Analysis of the effect of Nb3Sn strand bending on CICC superconductor performance. Cryogenics, 2002, 42(5): 311–325.CrossRefGoogle Scholar
  24. 24.
    Zhai, Y.H. and Bird, M.D., Florida electro-mechanical cable model of Nb3Sn CICCs for high-field magnet design. Superconductor Science and Technology, 2008, 21(11): 115010.CrossRefGoogle Scholar
  25. 25.
    Qin, J.W., Wu, Y., Warnet, L.L. and Nijhuis, A.CORD, A Novel Numerical Mechanical Model for CICCs. Applied Superconductivity, IEEE Transactions on, 2011, 21(3): 2046–2049.CrossRefGoogle Scholar
  26. 26.
    Qin, J., Wu, Y., Warnet, L.L. and Nijhuis, A., A novel numerical mechanical model for the stress-strain distribution in superconducting cable-in-conduit conductors. Superconductor Science and Technology, 2011, 24(6): 065012.CrossRefGoogle Scholar
  27. 27.
    Zhao, Z.L., Zhao, H.P., Wang, J.S., Zhang, Z. and Feng, X.Q., Mechanical properties of carbon nanotube ropes with hierarchical helical structures. Journal of the Mechanics and Physics of Solids, 2014, 71: 64–83.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hruska, F.H., Radial forces in wire ropes. Wire and Wire Products, 1952, 27(5): 459–463.Google Scholar
  29. 29.
    Hruska, F.H., Tangential forces in wire ropes. Wire and Wire Products, 1953, 28(5): 455–460.Google Scholar
  30. 30.
    Utting, W.S. and Jones, N., The response of wire rope strands to axial tensile loads—Part I. Experimental results and theoretical predictions. International Journal of Mechanical Sciences, 1987, 29(9): 605–619.CrossRefGoogle Scholar
  31. 31.
    Elata, D., Eshkenazy, R. and Weiss, M.P., The mechanical behavior of a wire rope with an independent wire rope core. International Journal of Solids and Structures, 2004, 41(5): 1157–1172.CrossRefzbMATHGoogle Scholar
  32. 32.
    Raoof, M. and Hobbs, R.E., Analysis of multilayered structural strands. Journal of Engineering Mechanics, 1988, 114(7): 1166–1182.CrossRefGoogle Scholar
  33. 33.
    Jing, Z., Yong, Y.H. and Zhou, Y.H., Theoretical modeling for the effect of twisting on the properties of multifilamentary Nb3Sn superconducting strand. Applied Superconductivity, IEEE Transactions on, 2013, 23(11): 6000307.Google Scholar
  34. 34.
    Costello, G.A., Theory of Wire Rope. Springer Science & Business Media, 1997.CrossRefGoogle Scholar
  35. 35.
    Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, 2013.Google Scholar
  36. 36.
    Thompson, J.M.T. and Hunt, G.W., A General Theory of Elastic Stability. John Wiley & Sons, 1973.Google Scholar
  37. 37.
    Johnson, K.L., Contact Mechanics. Cambridge University Press, 1987.Google Scholar
  38. 38.
    Li, Y., Yang, T., Zhou, Y. and Gao, Y., Spring model for mechanical-electrical properties of CICC in cryogenic-electromagnetic environments. Cryogenics, 2014, 62: 14–30.CrossRefGoogle Scholar
  39. 39.
    Xia, J., Yong, H. and Zhou, Y., A structural mechanics model for the 2-D mechanical characteristics of ITER cable-in-conduit conductor cable under transverse loads. Applied Superconductivity, IEEE Transactions on, 2013, 23: 8401209.CrossRefGoogle Scholar
  40. 40.
    Jia, S.M., Wang, D.M. and Zheng, X.J., Multi-contact behaviors among Nb3Sn strands associated with load cycles in a CS1 cable cross section. Physica C, 2015, 508: 56–61.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2016

Authors and Affiliations

  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, and Department of Mechanics and Engineering Sciences, College of Civil Engineering and MechanicsLanzhou UniversityLanzhouChina
  2. 2.School of Mechano-Electronic EngineeringXidian UniversityXi’anChina

Personalised recommendations