Acta Mechanica Solida Sinica

, Volume 28, Issue 6, pp 659–667 | Cite as

Dynamic Stability Analysis of Embedded Multi-Walled Carbon Nanotubes in Thermal Environment

  • R. Ansari
  • R. Gholami
  • S. Sahmani
  • A. Norouzzadeh
  • M. Bazdid-Vahdati


In the present paper, the dynamic stability of multi-walled carbon nanotubes (MW-CNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam model is developed which captures small scale effects. Dynamic governing equations of the carbon nanotubes are formulated based on the Timoshenko beam theory including the effects of axial compressive force. Then a parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio and spring constant of the elastic medium on the dynamic stability characteristics of MWCNTs with simply-supported end supports.

Key Words

multi-walled carbon nanotubes dynamic stability nonlocal elasticity thermal environment small scale effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima, S., Helical microtubes of graphite carbon. Nature, 1991, 354: 56–58.CrossRefGoogle Scholar
  2. 2.
    Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M., Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678–680.CrossRefGoogle Scholar
  3. 3.
    Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianiolos, P.N. and Treacy, M.M.J., Young’s modulus of single-walled carbon nanotubes. Physical Review B, 1998, 58(20): 14013–14019.CrossRefGoogle Scholar
  4. 4.
    Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering A, 2002, 334(1–2): 173–178.CrossRefGoogle Scholar
  5. 5.
    Ke, C.H., Pugno, N., Peng, B. and Espinosa, H.D., Experiments and modeling of carbon nanotube-based NEMS devices. Journal of the Mechanics and Physics of Solids, 2005, 53(6): 1314–1333.CrossRefzbMATHGoogle Scholar
  6. 6.
    Eringen, A.C., Nonlocal polar elastic continua. International Journal of Engineering Science, 1972, 1: 1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eringen, A.C. and Edelen, D.G.B., On nonlocal elasticity. International Journal of Engineering Science, 1972, 1: 233–248.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Peddieson, J., Buchanan, G.R. and McNitt, R.P., Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 2003, 41(3–5): 305–312.CrossRefGoogle Scholar
  9. 9.
    Wang, Q., Varadan, V.K. and Quek, S.T., Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Physics Letters A, 2006, 357(2): 130–135.CrossRefGoogle Scholar
  10. 10.
    Artan, R. and Tepe, A., The initial values method for buckling of nonlocal bars with application in nanotechnology. European Journal of Mechanics—A/Solids, 2008, 27(3): 469–477.CrossRefzbMATHGoogle Scholar
  11. 11.
    Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A., Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field. Applied Mathematical Modelling, 2010, 34(12): 3933–3942.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, Y.Q., Liu, G.R. and Han, X., Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure. Physics Letters A, 2006, 349(5): 370–376.CrossRefGoogle Scholar
  13. 13.
    Yang, J., Ke, L.L. and Kitipornchai, S., Nonlinear free vibration of single-walled carbon nanotubes using nonlocal timoshenko beam theory. Physica E, 2010, 42(5): 1727–1735.CrossRefGoogle Scholar
  14. 14.
    Ansari, R., Rajabiehfard, R. and Arash, B., Nonlocal finite element model for vibrations of multi-layered graphene sheets. Computational Materials Science, 2010, 49(4): 831–838.CrossRefGoogle Scholar
  15. 15.
    Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I., Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. Journal of Mechanics and Physics of Solids, 2008, 56(12): 3475–3485.CrossRefzbMATHGoogle Scholar
  16. 16.
    Adali, S., Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. Physics Letters A , 2008, 372(35): 5701–5705.CrossRefzbMATHGoogle Scholar
  17. 17.
    Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S., Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Computational Materials Science, 2009, 47(2): 409–417.CrossRefGoogle Scholar
  18. 18.
    Ansari, R., Sahmani, S. and Arash, B., Nonlocal plate model for free vibrations of single-layered graphene sheets. Physics Letters A, 2010, 375: 53–62.CrossRefGoogle Scholar
  19. 19.
    Kiani, K., A Meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. International Journal of Mechanical Sciences, 2010, 52(10): 1343–1356.CrossRefGoogle Scholar
  20. 20.
    Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda-Bedia, E.A., Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Physica E, 2008, 40(8): 2791–2799.CrossRefGoogle Scholar
  21. 21.
    Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q., Application of nonlocal beam models for carbon nanotubes. International Journal of Solids and Structures, 2007, 44(16): 5289–5300.CrossRefzbMATHGoogle Scholar
  22. 22.
    Ansari, R., Sahmani, S. and Rouhi, H., Rayleigh-ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Physics Letters A, 2011, 375: 1255–1263.CrossRefGoogle Scholar
  23. 23.
    Roostai, H. and Haghpanahi, M., Transverse vibration of a hanging nonuniform nanoscale tube based on nonlocal elasticity theory with surface effect. Acta Mechanica Solida Sinica, 2014, 27(2): 202–209.CrossRefGoogle Scholar
  24. 24.
    Soltani, P., Kassaei, A. and Taherian, M.M., Nonlinear and quasi-linear behavior of a curved carbon nanotube vibrating in an electric force field; Analytical approach. Acta Mechanica Solida Sinica, 2014, 27(1): 202–209.CrossRefGoogle Scholar
  25. 25.
    Patel, A.M. and Joshi, A.Y., Investigating the influence of surface deviations in double walled carbon nanotube based nanomechanical sensors. Computational Materials Science , 2014, 89: 157–164.CrossRefGoogle Scholar
  26. 26.
    Arda, M. and Aydogdu, M., Torsional statics and dynamics of nanotubes embedded in an elastic medium. Composite Structures, 2014, 114: 80–91.CrossRefGoogle Scholar
  27. 27.
    Hsu, J.C., Chang, R.P. and Chang, W.J., Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory. Physics Letters A, 2008, 372: 2757–2759.CrossRefzbMATHGoogle Scholar
  28. 28.
    Ni, B., Sinnott, S.B., Mikulski, P.T. and Harrison, J.A., Compression of carbon nanotubes filled with C60, CH4, or Ne: predictions from molecular dynamics simulation. Physics Review Letters, 2002, 88: 205505–1.CrossRefGoogle Scholar
  29. 29.
    Li, R. and Kardomateas, G.A., Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. Journal of Applied Physics, 2007, 74: 399–405.zbMATHGoogle Scholar
  30. 30.
    Zhang, Y.Q., Liu, X. and Zhao, J.H., Influence of temperature change on column buckling of multiwalled carbon nanotubes. Physics Letters A, 2008, 372: 1676–1681.CrossRefzbMATHGoogle Scholar
  31. 31.
    Ansari, R., Sahmani, S. and Rouhi, H., Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique. Computational Materials Science, 2011, 50: 3050–3055.CrossRefGoogle Scholar
  32. 32.
    Ansari, R., Gholami, R. and Sahmani, S., Prediction of compressive post-buckling behavior of single-walled carbon nanotubes in thermal environments. Applied Physics A, 2013, 113: 145–153.CrossRefGoogle Scholar
  33. 33.
    Nayfeh, A.H., Nonlinear Oscillation. Wiley, New York, United States of America, 1979.Google Scholar
  34. 34.
    Ansari, R. and Ramezannezhad, H., Nonlocal timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E, 2011, 43: 1171–1178.CrossRefGoogle Scholar
  35. 35.
    He, X.Q., Kitipornchaia, S. and Liew, K.M., Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. Journal of Mechanics and Physics of Solids, 2005, 53: 303–326.CrossRefzbMATHGoogle Scholar
  36. 36.
    Pasternak, P.L., On a new method of analysis of an elastic foundation by means of two foundation constants, Gosudarstvennoe Izdatelstvo Literaturipo Stroitelstvui Arkhitekture, Moscow (in Russian), 1954.Google Scholar
  37. 37.
    Kim, N-I., Fu, C.C. and Kim, M.Y., Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations. Advances in Engineering Software, 2007, 38: 158–171.CrossRefGoogle Scholar
  38. 38.
    Bolotin, V.V., The Dynamic Stability of Elastic Systems. San Francisco, Holden-Day, 1964.zbMATHGoogle Scholar
  39. 39.
    Wang, L., Ni, Q., Li, M. and Qian, Q., The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E, 2008, 40: 3179–3182.CrossRefGoogle Scholar
  40. 40.
    Hemmatnezhad, M., Ansari, R. and Rezapour, J., The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions. Current Applied Physics, 2011, 11: 692–697.CrossRefGoogle Scholar
  41. 41.
    Ansari, R., Ramezannezhad, H. and Gholami, R., Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. Nonlinear Dynamics, 2012, 67: 2241–2254.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2015

Authors and Affiliations

  • R. Ansari
    • 1
  • R. Gholami
    • 2
  • S. Sahmani
    • 1
  • A. Norouzzadeh
    • 1
  • M. Bazdid-Vahdati
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of GuilanRashtIran
  2. 2.Department of Mechanical Engineering, Lahijan BranchIslamic Azad UniversityLahijanIran

Personalised recommendations