Acta Mechanica Solida Sinica

, Volume 27, Issue 6, pp 588–596 | Cite as

The Eigenvalue Problem and Saint-Venant Decay Rate for a Nonhomogeneous Semi-Infinite Strip

  • Qing Yang
  • Bailin Zheng
  • Kai Zhang
  • Jianxin Zhu


The eigenvalue problem about a nonhomogeneous semi-infinite strip is investigated using the methodology proposed by Papkovich and Fadle for homogeneous plane problems. Two types of nonhomogeneity are considered: (i) the elastic modulus varying with the thickness coordinate x exponentially, (ii) it varying with the length coordinate y exponentially. The eigenvalues for the two cases are obtained numerically in plane strain and plane stress states, respectively. By considering the smallest positive eigenvalue, the Saint-Venant Decay rates are estimated, which indicates material nonhomogeneity has a significant influence on the Saint-Venant end effect.

Key Words

eigenvalue Saint-Venant decay rate nonhomogeneous semi-infinite strip 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Papkovich, P.R., Uber eine form der lösung des biharmonischen problem für das rechteck. Doklady of the Academy of Sciences of the USSR, 1940, 27: 337.Google Scholar
  2. 2.
    Fadle, J., Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Ingenieur-Archiv, 1941, 11: 125–149.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Horvay, G., Biharmonic eigenvalue problem of the semi-infinite strip. Quarterly of Applied Mathematics, 1957, 15: 65–81.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gaydon, F.A. and Shepherd, W.M., Generalized plane stress in a semi-infinite strip under arbitrary end-load. Proceedings of the Royal Society of London Series A, 1964, 281: 184–206.CrossRefGoogle Scholar
  5. 5.
    Johnson, M.W. and Little, R.W., The semi-infinite strip. Quarterly of Applied Mathematics, 1965, 22: 335–344.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Horgan, C.O., Recent developments concerning Saint-Venant’s principle: a second update. Applied Mechanics Reviews, 1996, 49: 101–111.CrossRefGoogle Scholar
  7. 7.
    Scalpato, M.R. and Horgan, C.O., Saint Venant decay rates for an isotropic inhomogeneous linearly elastic solid in anti-plane shear. Journal of Elasticity, 1997, 48: 145–166.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chan, A.M. and Horgan, C.O., End effects in anti-plane shear for an inhomogeneous isotropic linearly elastic semi-infinite strip. Journal of Elasticity, 1998, 51: 227–242.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Horgan, C.O. and Quintanilla, R., Saint Venant end effects in anti-plane shear for functionally graded linearly elastic materials. Mathematics and Mechanics of solids, 2001, 6: 115–132.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leseduarte, M.C. and Quintanilla, R., Saint-Venant decay rates for an anisotropic and non-homogeneous mixture of elastic solids in anti-plane shear. International Journal of Solids and Structures, 2008, 45: 1697–1712.CrossRefGoogle Scholar
  11. 11.
    Flavin, J.N., Saint-Venant decay estimates for inhomogeneous isotropic two-dimensional elastostatics. In: O’Donoghue, P.E. and Flavin, J.N. (eds.), Symposium on Trends in the Application of Mathematics to Mechanics, 2000: 72–79.Google Scholar
  12. 12.
    Flavin, J.N., Spatial-decay estimates for a generalized biharmonic equation in inhomogeneous elasticity. Journal of Engineering Mathematics, 2003, 46: 241–252.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  • Qing Yang
    • 1
  • Bailin Zheng
    • 1
  • Kai Zhang
    • 1
  • Jianxin Zhu
    • 1
  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiChina

Personalised recommendations