Acta Mechanica Solida Sinica

, Volume 28, Issue 5, pp 497–509 | Cite as

Adhesion Strength and Morphologies of rBMSCs During Initial Adhesion and Spreading

Article

Abstract

Cell adhesion plays an important role in cell physiology. A better understanding of this process could facilitate many clinical therapies. In this study, Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured on glass substrate, and the morphology and adhesion strength were characterized. The cell morphology was defined as spherical, adhesive, and spreading. The adhesion strengths of the different morphologies exhibited different distribution patterns. The spherical cells exhibited low adhesion strength; the adhesive cells exhibited rapidly increasing adhesion strength while their diameters remained relatively constant. The adhesion strength increased with the cell diameter in the spreading cells. These findings suggest that adhesion strength can be quickly assessed by examining the cell morphology.

Key Words

cell adhesion micropipette aspiration cell morphology pseudopodia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zajaczkowski, M.B., Cukierman, E., Galbraith, C.G. and Yamada, K.M., Cell-matrix adhesions on poly (vinyl alcohol) hydrogels. Tissue Engineering, 2003, 9(3): 525–533.CrossRefGoogle Scholar
  2. 2.
    Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell, J., Molecular Cell Biology (4th edn). New York: Macmillan, 2008.Google Scholar
  3. 3.
    Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996, 84(3): 345–357.CrossRefGoogle Scholar
  4. 4.
    McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K. and Chen, C.S., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 2004, 6(4): 483–495.CrossRefGoogle Scholar
  5. 5.
    Ziegler, W.H., Liddington, R.C. and Critchley, D.R., The structure and regulation of vinculin. Trends in Cell Biology, 2006, 16(9): 453–460.CrossRefGoogle Scholar
  6. 6.
    Schultheiss, J., Seebach, C., Henrich, D., Wilhelm, K., Barker, J.H. and Frank, J., Mesenchymal stem cell (MSC) and endothelial progenitor cell (EPC) growth and adhesion in six different bone graft substitutes. European Journal of Trauma and Emergency Surgery, 2011, 37(6): 635–644.CrossRefGoogle Scholar
  7. 7.
    Christ, K.V. and Turner, K.T., Methods to measure the strength of cell adhesion to substrates. Journal of Adhesion Science and Technology, 2010, 24(13–14): 2027–2058.CrossRefGoogle Scholar
  8. 8.
    Fritsche, A., Luethen, F., Lembke, U., Finke, B., Zietz, C., Rychly, J., Mittelmeier, W. and Bader, R., Measuring bone cell adhesion on implant surfaces using a spinning disc device. Materialwissenschaft und Werkstofftechnik, 2010, 41(2): 83–88.CrossRefGoogle Scholar
  9. 9.
    Fritsche, A., Luethen, F., Lembke, U., Zietz, C., Rychly, J., Mittelmeier, W. and Bader, R., Time-dependent adhesive interaction of osteoblastic cells with polished titanium alloyed implant surfaces. Journal of Applied Biomaterials & Functional Materials, 2013, 11(1): 1–8.CrossRefGoogle Scholar
  10. 10.
    Cao, J., Usami, S. and Dong, C., Development of a side-view chamber for studying cell-surface adhesion under flow conditions. Annals of Biomedical Engineering, 1997, 25(3): 573–580.CrossRefGoogle Scholar
  11. 11.
    Christ, K.V., Williamson, K.B., Masters, K.S. and Turner, K.T., Measurement of single-cell adhesion strength using a microfluidic assay. Biomedical Microdevices, 2010, 12(3): 443–455.CrossRefGoogle Scholar
  12. 12.
    Wang, C.C., Hsu, Y.C., Su, F.C., Lu, S.C. and Lee, T.M., Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytode-tacher. Journal of Biomedical Materials Research Part A, 2009, 88A(2): 370–383.CrossRefGoogle Scholar
  13. 13.
    Rabinovich, Y.I., Esayanur, M., Daosukho, S., Byer, K.J., EI-Shall, H.E. and Khan, S.R., Adhesion force between calcium oxalate monohydrate crystal and kidney epithelial cells and possible relevance for kidney stone formation. Journal of Colloid and Interface Science, 2006, 300(1): 131–140.CrossRefGoogle Scholar
  14. 14.
    Lin, Y. and Freund, L.B., Forced detachment of a vesicle in adhesive contact with a substrate. International Journal of Solids and Structures, 2007, 44(6): 1927–1938.CrossRefGoogle Scholar
  15. 15.
    Gao, Z., Wang, S. Zhu, H.S., Su, C.N., Xu, G.L. and Lian, X.J., Using selected uniform cells in round shape with a micropipette to measure cell adhesion strength on silk fibroin-based materials. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2008, 28(8): 1227–1235.CrossRefGoogle Scholar
  16. 16.
    Athanassiou, G. and Deligianni, D., Adhesion strength of individual human bone marrow cells to fibronectin. Integrin beta1-mediated adhesion. Journal of Materials Science-Materials in Medicine, 2001, 12(10–12): 965–970.CrossRefGoogle Scholar
  17. 17.
    Schemesh, T., Verkhovsky, A.B., Svitkina, T.M., Bershadsky, A.D. and Kozlov, M.M., Role of focal adhesions and mechanical stresses in the formation and progression of the lamellum interface. Biophysical Journal, 2009, 97(5): 1254–1264.CrossRefGoogle Scholar
  18. 18.
    Aplin, J.D. and Foden, L.J., A cell spreading factor, abundant in human placenta, contains fibronectin and fibrinogen. Journal of Cell Science, 1982, 58: 287–302.Google Scholar
  19. 19.
    Kim, M.H., Kino-Oka, M. and Taya, M., Designing culture surfaces based on cell anchoring mechanisms to regulate cell morphologies and functions. Biotechnology Advances, 2010, 28(1): 7–16.CrossRefGoogle Scholar
  20. 20.
    Frish, T. and Thoumine, O., Predicting the kinetics of cell spreading. Journal of Biomechanics, 2002, 35(8): 1137–1141.CrossRefGoogle Scholar
  21. 21.
    Vasiliev, J.M., Polarization of pseudopodial activities: cytoskeletal mechanisms. Journal of Cell Science, 1991, 98: 1–4.Google Scholar
  22. 22.
    Steketee, M.B. and Tosney, K.W., Three functionally distinct adhesions in filopodia: shaft adhesions control lamellar extension. The Journal of Neuroscience, 2002, 22(18): 8071–8083.CrossRefGoogle Scholar
  23. 23.
    Schafer, C., Borm, B., Born, S., Mohl, C., Eibl, E.M. and Hoffmann, B., One step ahead: role of filopodia in adhesion formation during cell migration of keratinocytes. Experimental Cell Research, 2009, 315(7): 1212–1224.CrossRefGoogle Scholar
  24. 24.
    Bardsley, W.G. and Aplin, J.D., Kinetic analysis of cell spreading. I. Theory and modeling of curves. Journal of Cell Science, 1983, 61: 365–373.Google Scholar
  25. 25.
    Symons, M.H. and Mitchison, T.J., Control of actin polymerization in live and permeabilized fibroblasts. The Journal of Cell Biology, 1991, 114(3): 503–513.CrossRefGoogle Scholar
  26. 26.
    Even-Ram, S., Artym, V. and Yamada, K.M., Matrix control of stem cell fate. Cell, 2006, 126(4): 645–647.CrossRefGoogle Scholar
  27. 27.
    Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E., Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4): 677–689.CrossRefGoogle Scholar
  28. 28.
    Fernandes, G.V.O., Cavagis, A.D.M., Ferreira, C.V., Olej, B., Leao, M.D., Yano, C.L., Peppelenbosch, M., Granjeiro, J.M. and Zambuzzi, W.F., Osteoblast adhesion dynamics: A possible role for ROS and LMW-PTP. Journal of Cellular Biochemistry, 2014, 115(6): 1063–1069.CrossRefGoogle Scholar
  29. 29.
    Benoit, M., Gabriel, D., Gerish, G. and Gaub, H.E., Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biology, 2000, 2(6): 313–137.CrossRefGoogle Scholar
  30. 30.
    Elineni, K.K. and Gallant, N.D., Regulation of cell adhesion strength by peripheral focal adhesion distribution. Biophysical Journal, 2011, 101(12): 2903–2911.CrossRefGoogle Scholar
  31. 31.
    Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L. and Geiger, B., Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 2001, 3(5): 466–472.CrossRefGoogle Scholar
  32. 32.
    Nemethova, M., Auinger, S. and Small, J.V., Building the actin cytoskeleton filopodia contribute to the construction of contractile bundles in the lamella. The Journal of Cell Biology, 2008, 180(6): 1233–1244.CrossRefGoogle Scholar
  33. 33.
    Wood, W. and Martin, P., Structure in focus-filopodia. The International Journal of Biochemistry & Cell Biology, 2002, 34(7): 726–730.CrossRefGoogle Scholar
  34. 34.
    Lee, S. and Chung, C.Y., Role of VASP phosphorylation for the regulation of microglia chemotaxis via the regulation of focal adhesion formation/maturation. Molecular and Cellular Neuroscience, 2009, 42(4): 382–390.CrossRefGoogle Scholar
  35. 35.
    Gao, H.J., Qian, J. and Chen, B., Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modeling framework. Journal of the Royal Society Interface, 2011, 8(62): 1217–1232.CrossRefGoogle Scholar
  36. 36.
    Carisey, A. and Ballestrem, C., Vinculin, an adapter protein in control of cell adhesion signaling. European Journal of Cell Biology, 2011, 90(2–3): 157–163.CrossRefGoogle Scholar
  37. 37.
    Euteneuer, U. and Schliwa, M., Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature, 1984, 310(5972): 58–61.CrossRefGoogle Scholar
  38. 38.
    Li, Y., Xu, G.K., Li, B. and Feng, X.Q., A molecular mechanisms-based biophysical model for two-phase cell spreading. Applied Physics Letters, 2010, 96(4): 043703.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2015

Authors and Affiliations

  1. 1.The State Key Laboratory of TribologyTsinghua UniversityBeijingChina

Personalised recommendations