Acta Mechanica Solida Sinica

, Volume 28, Issue 3, pp 294–304 | Cite as

Symplectic Analysis for Wave Propagation of Hierarchical Honeycomb Structures

  • Kai Zhang
  • Zichen Deng
  • Xiaojian Xu
  • Xiuhui Hou
  • Junmiao Meng


Wave propagation in two-dimensional hierarchical honeycomb structures with two-order hierarchy is investigated by using the symplectic algorithm. By applying the variational principle to the dual variables, the wave propagation problem is transformed into a two-dimensional symplectic eigenvalue problem. The band gaps and spatial filtering phenomena are examined to find the stop bands and directional stop bands. Special attention is directed to the effects of the relative density and the length ratio on the band gaps and phase constant surfaces. This work provides new opportunities for designing hierarchical honeycomb structures in sound insulation applications.

Key Words

hierarchical honeycomb structures wave propagation band gap phase constant surface symplectic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fleck, N.A., Deshpande, V.S. and Ashby, M.F., Micro-architectured materials: past, present and future. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2010, 466(2121): 2495–2516.CrossRefGoogle Scholar
  2. 2.
    Hutchinson, R. and Fleck, N., The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids, 2006, 54(4): 756–782.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties (2nd ed). Cambridge, U.K.: Cambridge University Press, 1997.CrossRefGoogle Scholar
  4. 4.
    Valdevit, L., Hutchinson, J.W. and Evans, A.G., Structurally optimized sandwich panels with prismatic cores. International Journal of Solids and Structures, 2004, 41(18–19): 5105–5124.CrossRefGoogle Scholar
  5. 5.
    Zhou, J., et al., Optimal design of metallic sandwich tubes with prismatic cores to internal moving shock load. Structural and Multidisciplinary Optimization, 2010, 41(1): 133–150.CrossRefGoogle Scholar
  6. 6.
    Evans, A.G., et al., The topological design of multifunctional cellular metals. Progress in Materials Science, 2001, 46(3): 309–327.CrossRefGoogle Scholar
  7. 7.
    Zhang, X. and Cheng, G., A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. International Journal of Impact Engineering, 2007, 34(11): 1739–1752.CrossRefGoogle Scholar
  8. 8.
    Liu, T., Fleck, N.A. and Wadley, H.N.G., et al., The impact of sand slugs against beams and plates: Coupled discrete particle/finite element simulations. Journal of the Mechanics and Physics of Solids, 2013, 61(8): 1798–1821.CrossRefGoogle Scholar
  9. 9.
    Gu, S., Lu, T. and Evans, A., On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. International Journal of Heat and Mass Transfer, 2001, 44(11): 2163–2175.CrossRefGoogle Scholar
  10. 10.
    Lu, T., Valdevit, L. and Evans, A., Active cooling by metallic sandwich structures with periodic cores. Progress in Materials Science, 2005, 50(7): 789–815.CrossRefGoogle Scholar
  11. 11.
    Kumar, R. and Mcdowell, D., Multifunctional design of two-dimensional cellular materials with tailored mesostructure. International Journal of Solids and Structures, 2009, 46(14–15): 2871–2885.CrossRefGoogle Scholar
  12. 12.
    Ajdari, A., et al., Hierarchical honeycombs with tailorable properties. International Journal of Solids and Structures, 2012, 49(11–12): 1413–1419.CrossRefGoogle Scholar
  13. 13.
    Haghpanah, B., Ramin, O. and Jim, P., et al., Sell-similar hierarchical honeycombs. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences. 2013, 469(2156): 1–19.CrossRefGoogle Scholar
  14. 14.
    Phani, A.S., Woodhouse, J. and Fleck, N., Wave propagation in two-dimensional periodic lattices. The Journal of the Acoustical Society of America, 2006, 119: 1995.CrossRefGoogle Scholar
  15. 15.
    Montero De Espinosa, F.R., Jiménez, E. and Torres, M., Ultrasonic band gap in a periodic two-dimensional composite. Physical Review Letters, 1998, 80(6): 1208–1211.CrossRefGoogle Scholar
  16. 16.
    Spadoni, A., Ruzzene, M. and Gonella, S., et al., Phononic properties of hexagonal chiral lattices. Wave Motion, 2009, 46(7): 435–450.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gonella, S. and Ruzzene, M., Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. Journal of Sound and Vibration, 2008, 312(1): 125–139.CrossRefGoogle Scholar
  18. 18.
    Gonella, S., To, A.C. and Liu, W.K., Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. Journal of the Mechanics and Physics of Solids, 2009, 57(3): 621–633.CrossRefGoogle Scholar
  19. 19.
    Kushwaha, M., Halevi, P. and Dobrzynski, L., et al., Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71(13): 2022.CrossRefGoogle Scholar
  20. 20.
    Kushwaha, M., Kushwaha, M.S. and Halevi, P., et al., Theory of acoustic band structure of periodic elastic composites. Physical Review B, 1994, 49(4): 2313.CrossRefGoogle Scholar
  21. 21.
    Zhong, W., Williams, F. and Leung, A., Symplectic analysis for periodical electro-magnetic waveguides. Journal of Sound and Vibration, 2003, 267(2): 227–244.CrossRefGoogle Scholar
  22. 22.
    Zhang, H.W., et al., Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method. International Journal of Solids and Structures, 2007, 44(20): 6428–6449.CrossRefGoogle Scholar
  23. 23.
    Hou, X.H., Deng, Z.C. and Zhou, J.X., Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and MechanicsEnglish Edition, 2010, 31(11): 1371–1382.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhou, M., Zhong, W. and Williams, F., Wave propagation in substructural chain-type structures excited by harmonic forces. International Journal of Mechanical Sciences, 1993, 35(11): 953–964.CrossRefGoogle Scholar
  25. 25.
    Wittrick, W.H. and Williams, F.W., A general algorithm for computing natural frequencies of elastic structures. The Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(3): 263–284.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Williams, F., Wanxie, Z. and Bennett, P., Computation of the eigenvalues of wave propagation in periodic substructural systems. Journal of Vibration Acoustics, 1993, 115(4): 422–426.CrossRefGoogle Scholar
  27. 27.
    Hou, X.H., Deng, Z.C. and Zhou, J.X., et al., Symplectic analysis for elastic wave propagation in two-dimensional cellular structures. Acta Mechanica Sinica, 2010, 26(5): 711–720.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2015

Authors and Affiliations

  • Kai Zhang
    • 1
  • Zichen Deng
    • 1
  • Xiaojian Xu
    • 1
  • Xiuhui Hou
    • 2
  • Junmiao Meng
    • 1
  1. 1.School of Mechanics, Civil Engineering and ArchitectureNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Civil EngineeringChang’an UniversityXi’anChina

Personalised recommendations