Acta Mechanica Solida Sinica

, Volume 28, Issue 3, pp 277–284 | Cite as

Effects of Different Functionalization Schemes on the Interfacial Strength of Carbon Nanotube Polyethylene Composite

  • Tan Xiao
  • Juqing Liu
  • Huifang Xiong


The mechanical performance of carbon nanotube (CNT) reinforced polymer composites is primarily controlled by the dispersive capacity and interfacial shear strength of CNTs in polymer matrices. CNT functionalizations will improve dispersion and strengthen interfacial bonding of CNTs in matrices. To understand the effects of different functionalization schemes on the interfacial strength of CNT-polymer composites, pullout of the covalent, noncovalent, and mixed functionalized single-walled carbon nanotube (SWCNT) from polyethylene (PE) matrix was simulated by using molecular dynamics, respectively. The results show that the SWCNT-PE interfacial shear strength is significantly improved by SWCNT functionalizations, particularly by mixed functionalization.

Key Words

interfacial shear strength carbon nanotubes nano composites molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calvert, P., Nanotube composites: a recipe for strength. Nature, 1999, 399: 210–211.CrossRefGoogle Scholar
  2. 2.
    Gojny, F.H., Nastalczyk, J., Roslamiec, Z. and Schulte, K., Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters, 2003, 370: 820–824.CrossRefGoogle Scholar
  3. 3.
    Zhu, J., Kim, J.D., Peng, H.Q., Margrave, J.L., Khabashesku, V.N. and Barrera, E.V., Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Letters, 2003, 3: 1107–1113.CrossRefGoogle Scholar
  4. 4.
    Jin, L., Bower, B. and Zhou, O., Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Applied Physics Letters, 1998, 73: 1197–1199.CrossRefGoogle Scholar
  5. 5.
    Schadler, L.S., Giannaris, S.C. and Ajayan, P.M., Load transfer in carbon nanotube epoxy composites. Applied Physics Letters, 1998, 73: 3842–3844.CrossRefGoogle Scholar
  6. 6.
    Sinnott, S.B., Chemical functionalization of carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2002, 2: 113–123.CrossRefGoogle Scholar
  7. 7.
    Li, X.D., Gao, H.S., Scrivens, W.A., Fei, D.L., Xu, X.Y., Sutton, M.A., Reynolds, A.P. and Myrich, M.L., Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology, 2004, 15: 1416–1423.CrossRefGoogle Scholar
  8. 8.
    Ajayan, P.M., Schadler, L.S., Giannaris, C. and Rubio, A., Single-walled carbon nanotube polymer composites: strength and weakness. Advanced Materials, 2000, 12: 750–753.CrossRefGoogle Scholar
  9. 9.
    Eitan, A., Jiang, K.Y., Dukes, D., Andrews, R. and Schadler, L.S., Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chemistry of Materials, 2003, 15: 3198–3201.CrossRefGoogle Scholar
  10. 10.
    Steuerman, D.W., Star, A., Narizzano, R., Choi, H., Ries, R.S., Nicolini, C., Stoddart, J.F. and Heath, J.R., Interactions between conjugated polymers and single-walled carbon nanotubes. The Journal of Physical Chemistry B, 2002, 106: 3124–3130.CrossRefGoogle Scholar
  11. 11.
    Hamon, M.A., Hu, H., Bhowmik, P., Itkis, H.M.E. and Haddon, R.C., Ester-functionalized soluble single-walled carbon nanotubes. Applied Physics A, 2002, 74: 333–338.CrossRefGoogle Scholar
  12. 12.
    Chen, J., Hamon, M.A., Hu, H., Chen, Y.S., Rao, A.M., Eklund, P.C. and Haddon, R.C., Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95–98.CrossRefGoogle Scholar
  13. 13.
    Frankland, S.J.V., Caglar, A., Brenner, D.W. and Griebel, M., Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. The Journal of Physical Chemistry B, 2002, 106: 3046–3048.CrossRefGoogle Scholar
  14. 14.
    Namilae, S. and Chandra, N., Multiscale model to study the effect of interfaces in carbon nanotube-based composites. Journal of Engineering Materials and Technology, 2005, 127: 222–232.CrossRefGoogle Scholar
  15. 15.
    Lordi, V. and Yao, N., Molecular mechanics of binding in carbon-nanotube-polymer composites. Journal of Materials Research, 2000, 15: 2770–2779.CrossRefGoogle Scholar
  16. 16.
    Chen, R.J., Zhang, Y.G., Wang, D.W. and Dai, H.J., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society, 2001, 123: 3838–3839.CrossRefGoogle Scholar
  17. 17.
    O’Connell, M.J., Boul, P., Ericson, L.M., Huffman, C., Wang, Y.H., Haroz, E., Kuper, C., Tour, J., Ausman, K.D. and Smalley, R.E., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001, 342: 265–271.CrossRefGoogle Scholar
  18. 18.
    Liu, J.Q., Xiao, T., Liao, K. and Wu, P., Interfacial design of carbon nanotube polymer composites: hybrid system of noncovalent and covalent functionalization. Nanotechnology, 2007, 18: 165701.CrossRefGoogle Scholar
  19. 19.
    Wei, C.Y., Adhesion and reinforcement in carbon nanotube polymer composite. Applied Physics Letters, 2006, 88: 093108.CrossRefGoogle Scholar
  20. 20.
    Zhang, Q., Qi, Y., Hector, L.G., Cagin, T. and Goddard, W.A., Origin of static friction and its relationship to adhesion at the atomic scale. Physical Review B, 2007, 75: 144114.CrossRefGoogle Scholar
  21. 21.
    Huq, A.M.A., Goh, K.L., Zhou, Z.R. and Liao, K., On defect interactions in axially loaded single-walled carbon nanotubes. Journal of Applied Physics, 2008, 103: 054306.CrossRefGoogle Scholar
  22. 22.
    Pitkethly, M.J. and Doble, J.B., Characterizing the fiber/matrix interface of carbon fiber-reinforced composites using a single fiber pull-out test. Composites, 1990, 21: 389–395.CrossRefGoogle Scholar
  23. 23.
    Cooper, C.A., Cohen, S.R., Barber, A.H. and Wagner, H.D., Detachment of nanotubes from a polymer matrix. Applied Physics Letters, 2002, 81: 3873–3875.CrossRefGoogle Scholar
  24. 24.
    Barber, A.H., Cohen, S.R. and Wagner, H.D., Measurement of carbon nanotube-polymer interfacial strength. Applied Physics Letters, 2003, 82: 4140–4142.CrossRefGoogle Scholar
  25. 25.
    Liao, K. and Li, S., Interfacial characteristics of a carbon nanotube-polystyrene composite system. Applied Physics Letters, 2001, 79: 4225–4227.CrossRefGoogle Scholar
  26. 26.
    Wei, C.Y., Structural phase transition of alkane molecules in nanotube composites. Physical Review B, 2007, 76: 134104.CrossRefGoogle Scholar
  27. 27.
    Chen, S.M., Shen, W.M., Wu, G.Z., Chen, D.Y. and Jiang, M., A new approach to the functionalization of single-walled carbon nanotubes with alkyl and carboxyl groups. Chemical Physics Letters, 2005, 402: 312–317.CrossRefGoogle Scholar
  28. 28.
    Liu, L.Q. and Wagner, H.D., A comparison of the mechanical strength and stiffness of MWNT-PMMA and MWNT-epoxy nanocomposites. Composite Interfaces, 2007, 14: 285–297.CrossRefGoogle Scholar
  29. 29.
    in het Panhuis, M., Maiti, A., Dalton, A.B., van den Noort, A., Coleman, J.N., McCarthy, B. and Blau, W.J., Selective interaction in a polymer-single-wall carbon nanotube composite. The Journal of Physical Chemistry B, 2003, 107: 478–482.CrossRefGoogle Scholar
  30. 30.
    Amorphous Cell and Discover are modules in Materials Studio, a software package for materials simulation and modeling, developed by Accelrys®Software Incorporation, USA.Google Scholar
  31. 31.
    Brandrup, J., Immergut, E.H., Grulke, E.A., Abe, A. and Bloch, D.R., Polymer Handbook. New York: Wiley, 1999.Google Scholar
  32. 32.
    Sun, H., COMPASS: an ab initio force-field optimized for condensed-phase applications- overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 1998, 102: 7338–7364.CrossRefGoogle Scholar
  33. 33.
    Wong, M., Paramsothy, M., Xu, X.J., Ren, Y., Li, S. and Liao, K., Physical interactions at carbon nanotube polymer interface. Polymer, 2003, 44: 7757–7764.CrossRefGoogle Scholar
  34. 34.
    Yang, M., Koutsos, V. and Zaiser, M., Interaction between polymers and carbon nanotubes: a molecular dynamics study. The Journal of Physical Chemistry B, 2005, 109: 10009–10014.CrossRefGoogle Scholar
  35. 35.
    Xia, Z. and Curtin, W.A., Pullout forces and friction in multiwall carbon nanotubes. Physical Review B, 2004, 69: 233408.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2015

Authors and Affiliations

  1. 1.Architecture and Civil Engineering InstituteGuangdong University of Petrochemical TechnologyMaomingChina
  2. 2.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)NanjingChina
  3. 3.School of Computer and Electronic InformationGuangdong University of Petrochemical TechnologyMaomingChina

Personalised recommendations