Advertisement

Acta Mechanica Solida Sinica

, Volume 27, Issue 2, pp 122–128 | Cite as

Surface Stress Properties of DNA-Microcantilever Systems

  • Zouqing Tan
  • Nenghui Zhang
  • Jingjing Li
Article

Abstract

For the first time, the connection between surface stress and nanoscopic interactions of DNA adsorbed on microcantilever is established by combining Strey’s mesoscopic liquid crystal theory and Stoney’s formula. It is shown that surface stress depends not only on biomolecular interactions of DNA biofilm but also on mechanical properties of cantilever. Considering the correlativity between grafting density and chain length of DNA chain, we discuss the differences between DNA-microcantilever system and DNA solution system. The major theoretical achievement of this model is to identify the main contributions to surface stress under different detection conditions. This provides guidelines for designing new biosensors with high sensitivity and improved reliability.

Key Words

surface stress DNA hybridization microcantilever biosensor energy method biomolecular interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arlett, J.L., Myers, E.B. and Roukes, M.L., Comparative advantages of mechanical biosensors. Nature Nanotechnology, 2011, 6(4): 203–215.CrossRefGoogle Scholar
  2. 2.
    Zhang, N.H., Tan, Z.Q., Li, J.J., Meng, W.L. and Xu, L.W., Interactions of single-stranded DNA on micro-cantilevers. Current Opinion in Colloid and Interface Science, 2011, 16(6): 592–596.CrossRefGoogle Scholar
  3. 3.
    Zhang, N.H. and Shan, J.Y., An energy model for nanomechanical deflection of cantilever-DNA chip. Journal of the Mechanics and Physics of Solids, 2008, 56(6): 2328–2337.CrossRefGoogle Scholar
  4. 4.
    Wang, J.X., Huang, Z.P., Duan, H.L., Yu, S.W., Feng, X.Q., Wang, G.F., Zhang, W.X. and Wang, T.J., Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 2011, 24(1): 52–82.CrossRefGoogle Scholar
  5. 5.
    Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H.J., Gerber, C. and Gimzewski, J.K., Translating biomolecular recognition into nanomechanics. Science, 2000, 288(5464): 316–318.CrossRefGoogle Scholar
  6. 6.
    Wu, G.H., Ji, H.F., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M.F., Chakraborty, A.K. and Majumdar, A., Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1560–1564.CrossRefGoogle Scholar
  7. 7.
    McKendry, R., Zhang, J.Y., Arntz, Y., Strunz, T., Hegner, M., Lang, H.P., Baller, M.K., Certa, U., Meyer, E., Guntherodt, H.J. and Gerber, C., Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9783–9788.CrossRefGoogle Scholar
  8. 8.
    Alvarez, M., Carrascosa, L.G., Moreno, M., Calle, A., Zaballos, A., Lechuga, L.M., Martinez-A, C. and Tamayo, J., Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers. Langmuir, 2004, 20(22): 9663–9668.CrossRefGoogle Scholar
  9. 9.
    Mertens, J., Rogero, C., Calleja, M., Ramos, D., Martin-Gago, J.A., Briones, C. and Tamayo, J., Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nature Nanotechnology, 2008, 3(5): 301–307.CrossRefGoogle Scholar
  10. 10.
    Shuttleworth, R., The surface tension of solids. Proceedings of the Physical Society A, 1950, 63: 444–457.CrossRefGoogle Scholar
  11. 11.
    Stoney, G.G., The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London Series A, 1909, 82(553): 172–175.CrossRefGoogle Scholar
  12. 12.
    Zhang, J.Q., Yu, S.W., Feng, X.Q. and Wang, G.F., Theoretical analysis of adsorption-induced microcantilever bending. Journal of Applied Physics, 2008, 103(9): 093506-1-6.Google Scholar
  13. 13.
    Yi, X. and Duan, H.L., Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1254–1266.CrossRefGoogle Scholar
  14. 14.
    Liu, F., Zhang, Y. and Ou-Yang, Z.C., Flexoelectric origin of nanomechanic deflection in DNA-microcantilever system. Biosensors and Bioelectronics, 2003, 18(5–6): 655–660.CrossRefGoogle Scholar
  15. 15.
    Zhang, N.H., Shan, J.Y. and Xing, J.J., Piezoelectric properties of single-strand DNA molecular brush bio-layers. Acta Mechanica Solida Sinica, 2007, 20(3): 206–210.CrossRefGoogle Scholar
  16. 16.
    Begley, M.R., Utz, M. and Komaragiri, U., Chemo-mechanical interactions between adsorbed molecules and thin elastic films. Journal of the Mechanics and Physics of Solids, 2005, 53(9): 2119–2140.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Utz, M. and Begley, M.R., Scaling theory of adsorption-induced stresses in polymer brushes grafted onto compliant structures. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 801–814.CrossRefGoogle Scholar
  18. 18.
    Zhang, N.H. and Shan, J.Y., Nanomechanical behaviors of microcantilever-based single-stranded DNA chips induced by counterion osmotic effects. Biomechanics and Modeling in Mechanobiology, 2011, 10(2): 229–234.CrossRefGoogle Scholar
  19. 19.
    Strey, H.H., Parsegian, V.A. and Podgornik, R., Equation of state for DNA liquid crystals: Fluctuation enhanced electrostatic double layer repulsion. Physical Review Letters, 1997, 78(5): 895–898.CrossRefGoogle Scholar
  20. 20.
    Strey, H.H., Parsegian, V.A. and Podgornik, R., Equation of state for polymer liquid crystals: theory and experiment. Physical Review E, 1999, 59(1): 999–1008.CrossRefGoogle Scholar
  21. 21.
    Hagan, M.F., Majumdar, A. and Chakraborty, A.K., Nanomechanical forces generated by surface grafted DNA. Journal of Physical Chemistry B, 2002, 106(39): 10163–10173.CrossRefGoogle Scholar
  22. 22.
    Zhang, N.H. and Chen, J.Z., Mechanical properties of double-stranded DNA biolayers immobilized on microcantilever under axial compression. Journal of Biomechanics, 2009, 42(10): 1483–1487.CrossRefGoogle Scholar
  23. 23.
    Zhang, N.H., Chen, J.Z., Li, J.J. and Tan, Z.Q., Mechanical properties of DNA biofilms adsorbed on microcantilevers in label-free biodetections. Biomaterials, 2010, 31(25): 6659–6666.CrossRefGoogle Scholar
  24. 24.
    Tinland, B., Pluen, A., Sturm, J. and Weill, G., Persistence length of single-stranded DNA. Macromolecules, 1997, 30(19): 5763–5765.CrossRefGoogle Scholar
  25. 25.
    Zhang, N.H. and Xing, J.J., An alternative model for elastic bending deformation of multilayered beams. Journal of Applied Physics, 2006, 100(10): 103519-1-5.Google Scholar
  26. 26.
    Zhang, N.H., Thermoelastic stresses in multilayered beams. Thin Solid Films, 2007, 515(23): 8402–8406.CrossRefGoogle Scholar
  27. 27.
    Zhang, N.H. and Chen, J.Z., An alternative two-variable model for bending problems of multilayered beams. Journal of Applied Mechanics, 2008, 75(4): 044503-1-3.CrossRefGoogle Scholar
  28. 28.
    Zhang, N.H. and Chen, J.Z., Elastic bending analysis of bilayered beams by an alternative two-variable method. European Journal of Mechanics A-Solids, 2009, 28(2): 284–288.CrossRefGoogle Scholar
  29. 29.
    Zhang, N.H. and Chen, J.Z., An alternative model for elastic thermal stresses in two materials joined by a graded layer. Composites Part B-Engineering, 2010, 41(5): 375–379.CrossRefGoogle Scholar
  30. 30.
    Zhang, N.H., Meng, W.L. and Aifantis, E.C., Elastic bending analysis of bilayered beams containing a gradient layer by an alternative two-variable method. Composite Structures, 2011, 93(12): 3130–3139.CrossRefGoogle Scholar
  31. 31.
    Tan, Z.Q., Li, J.J. and Zhang, N.H., An analytical model for nanomechanical behavior of microcantilever-DNA chip. In: Proceedings of the 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Weihai, China, 2009, 74933X-1-6.Google Scholar
  32. 32.
    Stachowiak, J.C., Yue, M., Castelino, K., Chakraborty, A. and Majumdar, A., Chemomechanics of surface stresses induced by DNA hybridization. Langmuir, 2006, 22(1): 263–268.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  2. 2.Department of Mechanics, College of SciencesShanghai UniversityShanghaiChina

Personalised recommendations