Advertisement

Acta Mechanica Solida Sinica

, Volume 26, Issue 5, pp 458–467 | Cite as

Free Vibration Analysis of Lattice Sandwich Beams under Several Typical Boundary Conditions

  • Jia Lou
  • Bing Wang
  • Li Ma
  • Linzhi Wu
Article

Abstract

Free vibration problems of lattice sandwich beams under several typical boundary conditions are investigated in the present paper. The lattice sandwich beam is transformed to an equivalent homogeneous three-layered sandwich beam. Unlike the traditional analytical model in which the rotation angles of the face sheets and the core are assumed the same, different rotation angles are considered in this paper to characterize the real response of sandwich beams. The analytical solutions of the natural frequencies for several typical boundary conditions are obtained. The effects of material properties and geometric parameters on the natural frequencies are also investigated.

Keywords

vibration composites lattice materials beam analytical method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties, 2nd Ed. Cambridge University Press: Cambridge, 1997.CrossRefGoogle Scholar
  2. 2.
    Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F. and Wadley, H.N.G., The topological design of multifunctional cellular metals. Progress in Materials Science, 2001, 46(3–4): 309–327.CrossRefGoogle Scholar
  3. 3.
    Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. A Design Guide. Boston: Butterworth Heinemann: and Wadley, H.N.G., Metal Foams, 2000.Google Scholar
  4. 4.
    Wallach, J.C. and Gibson, L.J., Mechanical behavior of a three-dimensional truss material. Internal Journal of Solids and Structures, 2001, 38(40–41):7181–7196.CrossRefGoogle Scholar
  5. 5.
    Fan, H.L. and Fang, D.N., Enhancement of mechanical properties of hollow strut foams: Analysis. Materials and Design, 2009, 30(5): 1659–1666.CrossRefGoogle Scholar
  6. 6.
    Fan, H.L., Jin, F.N. and Fang, D.N., Mechanical properties of hierarchical cellular materials. Part I: Analysis. Composites Science and Technology, 2008, 68(15–16): 3380–3387.CrossRefGoogle Scholar
  7. 7.
    Fan, H.L., Yang, W. and Chao, Z.M., Microwave absorbing composite lattice grids. Composites Science and Technology, 2007, 67(15–16): 3472–3479.CrossRefGoogle Scholar
  8. 8.
    Lu, T.J., Valdevit, L. and Evans, A.G., Active cooling by metallic sandwich structures with periodic cores. Progress in Materials Science, 2005, 50(7): 789–815.CrossRefGoogle Scholar
  9. 9.
    Bart-Smith, H., Hutchinson, J.W. and Evans, A.G., Measurement and analysis of the structural performance of cellular metal sandwich construction. Internal Journal of Mechanical Sciences, 2001, 43(8): 1945–1963.CrossRefGoogle Scholar
  10. 10.
    Wadley, H.N.G., Fleck, N.A. and Evans, A.G., Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology, 2003, 63(16): 2331–2343.CrossRefGoogle Scholar
  11. 11.
    Deshpande, V.S., Ashby, M.F. and Fleck, N.A., Foam topology: bending versus stretching dominated architectures. Acta Materialia, 2001, 49(6): 1035–1040.CrossRefGoogle Scholar
  12. 12.
    Deshpande, V.S., Fleck, N.A. and Ashby, M.F., Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1747–1769.CrossRefGoogle Scholar
  13. 13.
    Cote, F., Biagi, R., Bart-Smith, H. and Deshpande, V.S., Structural response of pyramidal core sandwich columns. Internal Journal of Solids and Structures, 2007, 44(10): 3533–3556.CrossRefGoogle Scholar
  14. 14.
    Li, M., Wu, L.Z., Ma, L., Wang, B. and Guan, Z.X., Structural response of all-composite pyramidal truss core sandwich columns in end compression. Composite Structures, 2001, 93(8): 1964–1972.CrossRefGoogle Scholar
  15. 15.
    Xiong, J., Ma, L., Wu, L.Z., Liu, J.Y. and Vaziri, A., Mechanical behavior and failure of composite pyramidal truss core sandwich columns. Composites Part B: Engineering, 2011, 42(4): 938–945.CrossRefGoogle Scholar
  16. 16.
    Wang, B., Wu, L.Z., Ma, L., Wang, Q. and Du, S.Y., Fabrication and testing of carbon fiber reinforced truss core sandwich panels. Journal of Materials Science and Technology, 2009, 25(4): 547–550.Google Scholar
  17. 17.
    Wang, C.M., Vibration frequencies of simply supported polygonal sandwich plates via Kirchhoff solutions. Journal of Sound and Vibration, 1996, 190(2): 255–260.CrossRefGoogle Scholar
  18. 18.
    Lok, T.S. and Cheng, Q.H., Free and forced vibration of simply supported, orthotropic sandwich panel. Computers and Structures, 2001, 79(3): 301–312.CrossRefGoogle Scholar
  19. 19.
    Hwu, C., Chang, W.C. and Gai, H.S., Vibration suppression of composite sandwich beams. Journal of Sound and Vibration, 2004, 272: 1–20.CrossRefGoogle Scholar
  20. 20.
    Arvin, H., Sadighi, M. and Ohadi, A.R., A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core. Composite Structures, 2010, 92(4): 996–1008.CrossRefGoogle Scholar
  21. 21.
    Allen, H.G., Analysis and Design of Structural Sandwich Panels. Pergamon Press: Oxford, 1969.Google Scholar
  22. 22.
    Deshpande, V.S. and Fleck, N.A., Collapse of truss core sandwich beams in 3-point bending. Internal Journal of Solids and Structures, 2001, 38(36–37): 6275–6305.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2013

Authors and Affiliations

  1. 1.Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina

Personalised recommendations