Acta Mechanica Solida Sinica

, Volume 26, Issue 1, pp 9–20 | Cite as

Dynamic Analysis of a Gradient Elastic Polymeric Fiber

  • K. Y. Xu
  • K. A. Alnefaie
  • N. H. Abu-Hamdeh
  • K. H. Almitani
  • E. C. Aifantis


A dynamic analysis of an elastic gradient-dependent polymeric fiber subjected to a periodic excitation is considered. A nonlinear gradient elasticity constitutive equation with strain-dependent gradient coefficients is first derived and the dispersive wave propagation properties for its linearized counterpart are briefly discussed. For the linearized problem a variational formulation is also developed to obtain related boundary conditions of both classical (standard) and non-classical (gradient) type. Analytical solutions in the form of Fourier series for the fiber’s displacement and strain fields are provided. The solutions depend on a dimensionless scale parameter (the diameter to length radio d = D/L) and, therefore, size effects are captured.

Key words

gradient elasticity polymeric fibers periodic excitations size effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aifantis, E.C., Gradient deformation models at nano, micro, and macro scales. Journal of Engineering Materials and Technology, 1999, 12: 189–202.CrossRefGoogle Scholar
  2. [2]
    Aifantis, E.C., Strain gradient interpretation of size effects. International Journal of Fracture, 1999, 95: 299–314.CrossRefGoogle Scholar
  3. [3]
    Aifantis, E.C., Gradient Plasticity. In: Handbook of Materials Behavior Models, Ed. Lemaitre, J., New York: Academic Press, 2001: 91–307.Google Scholar
  4. [4]
    Aifantis, E.C., Update on a class of gradient theories. Mechanics of Materials, 2003, 35: 259–280.CrossRefGoogle Scholar
  5. [5]
    Altan, B.S. and Aifantis, E.C., On some aspects in the special theory of gradient elasticity. Journal of the Mechanical Behavior of Materials, 1997, 8: 231–282.CrossRefGoogle Scholar
  6. [6]
    Altan, B.S., Evensen, H.A. and Aifantis, E.C., Longitudinal vibrations of a beam: A gradient elasticity approach. Mechanics Research Communications, 1996, 23: 35–40.CrossRefGoogle Scholar
  7. [7]
    Tsepoura, K.G., Papargyri-Beskou, S., Polyzos, D. and Beskos, D.E., Static and dynamic analysis of a gradient-elastic bar in tension. Archive of Applied Mechanics, 2002, 72: 483–497.CrossRefGoogle Scholar
  8. [8]
    Papargyri-Beskou, S., Polyzos, D. and Beskos, D.E., Dynamic analysis of gradient elastic flexural beam. Structural Engineering and Mechanics, 2003, 15: 705–716.CrossRefGoogle Scholar
  9. [9]
    Askes, H. and Aifantis, E.C., Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. International Journal of Solids and Structures, 2011, 48: 1962–1990.CrossRefGoogle Scholar
  10. [10]
    Xu, K.Y. and Aifantis, E.C., Strain analysis of a gradient elastic nanofiber in tension. In: Proceedings of the 5th International Conference on Nonlinear Mechanics (ICNM-V), Ed. Zhou, Z.W., Shanghai, 2007: 532–536.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2013

Authors and Affiliations

  • K. Y. Xu
    • 1
  • K. A. Alnefaie
    • 2
  • N. H. Abu-Hamdeh
    • 2
  • K. H. Almitani
    • 2
  • E. C. Aifantis
    • 2
    • 3
    • 4
  1. 1.Department of MechanicsShanghai UniversityShanghaiChina
  2. 2.Department of Mechanical EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Lab of Mechanics and Materials, Polytechnic SchoolAristotle UniversityThessalonikiGreece
  4. 4.King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations