Acta Mechanica Solida Sinica

, Volume 25, Issue 5, pp 542–549 | Cite as

Rate Dependent Stress-Stretch Relation of Dielectric Elastomers Subjected to Pure Shear Like Loading and Electric Field

  • Shaoxing Qu
  • Ke Li
  • Tiefeng Li
  • Hanqing Jiang
  • Miao Wang
  • Zhenhua Li
Article

Abstract

The performance of dielectric elastomer (DE) transducers is significantly affected by viscoelastic relaxation-induced electromechanical dissipations. This paper presents an experimental study to obtain the rate dependent stress-stretch relation of DE membranes (VHB™9473) subjected to pure shear like loading and electric loading simultaneously. Stretching rate dependent behavior is observed. The results also show that the tensile force decreases as the voltage increases. The observations are compared with predictions by a viscoelastic model of DE. This experiment may be used for further studies of dynamic electromechanical coupling properties of DEs.

Key words

dielectric elastomer viscoelastic electromechanical coupling membranes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hirai, T., Nemoto, H., Hirai, M. and Hayashi, S., Electrostriction of highly swollen polymer gel: Possible application for gel actuator. Journal of Applied Polymer Science, 1994, 53(1): 79–84.CrossRefGoogle Scholar
  2. [2]
    Heydt, R., Kornbluh, R., Pelrine, R. and Mason, V., Design and performance of an electrostrictive-polymer-film acoustic actuator. Journal of Sound and Vibration, 1998, 215(2): 297–311.CrossRefGoogle Scholar
  3. [3]
    Pelrine, R.E., Kornbluh, R.D. and Joseph, J.P., Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 1998, 64(1): 77–85.CrossRefGoogle Scholar
  4. [4]
    Zanna, J.J., Nguyen, H.T., Parneix, J.P., Ruffie, G. and Mauzac, M., Dielectric properties of side chain liquid crystalline elastomers: influence of crosslinking on side chain dynamics. The European Physical Journal B—Condensed Matter and Complex Systems, 1999, 10(2): 345–351.CrossRefGoogle Scholar
  5. [5]
    Liang, C., Sun, F.P. and Rogers, C.A., Coupled electro-mechanical analysis of adaptive material systems — determination of the actuator power consumption and system energy transfer. Journal of Intelligent Material Systems and Structures, 1994, 5(1): 12–20.CrossRefGoogle Scholar
  6. [6]
    Pelrine, R., Kornbluh, R., Pei, Q. and Joseph, J., High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287(5454): 836–839.CrossRefGoogle Scholar
  7. [7]
    Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q. and Chiba, S., High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering: C, 2000, 11(2): 89–100.CrossRefGoogle Scholar
  8. [8]
    Pelrine, R., Kornbluh, R. and Kofod, G., High-strain actuator materials based on dielectric elastomers. Advanced Materials, 2000, 12(16): 1223–1225.CrossRefGoogle Scholar
  9. [9]
    Wissler, M. and Mazza, E., Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators a-Physical, 2007, 138: 384–393.CrossRefGoogle Scholar
  10. [10]
    Moscardo, M., Zhao, X., Suo, Z. and Lapusta, Y., On designing dielectric elastomer actuators. Journal of Applied Physics, 2008, 104(9): 093503.CrossRefGoogle Scholar
  11. [11]
    O’Halloran, A., O’Malley, F. and McHugh, P., A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, 2008, 104(7): 071101.CrossRefGoogle Scholar
  12. [12]
    Koh, S.J.A., Zhao, X. and Suo, Z., Maximal energy that can be converted by a dielectric elastomer generator. Applied Physics Letters, 2009, 94(26): 262902.CrossRefGoogle Scholar
  13. [13]
    Brochu, P. and Pei, Q., Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 2010, 31(1): 10–36.CrossRefGoogle Scholar
  14. [14]
    Koh, S.J.A., Li, T., Zhou, J., Zhao, X., Hong, W., Zhu, J. and Suo, Z., Mechanisms of large actuation strain in dielectric elastomers. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(7): 504–515.CrossRefGoogle Scholar
  15. [15]
    Qiang, J.H., Chen, H.L. and Li, B., Experimental study on the dielectric properties of polyacrylate dielectric elastomer. Smart Materials and Structures, 2012, 21(2): 025006.CrossRefGoogle Scholar
  16. [16]
    Goulbourne, N., Mockensturm, E. and Frecker, M., A nonlinear model for dielectric elastomer membranes. Journal of Applied Mechanics, 2005, 72(6): 899–906.CrossRefGoogle Scholar
  17. [17]
    Dorfmann, A. and Ogden, R.W., Nonlinear electroelasticity. Acta Mechanica, 2005, 174(3): 167–183.CrossRefGoogle Scholar
  18. [18]
    Suo, Z., Zhao, X. and Greene, W.H., A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 467–486.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Trimarco, C., On the Lagrangian electrostatics of elastic solids. Acta Mechanica, 2009, 204(3): 193–201.CrossRefGoogle Scholar
  20. [20]
    Suo, Z., Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 2010, 23(6): 549–578.CrossRefGoogle Scholar
  21. [21]
    Plante, J.S. and Dubowsky, S., Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 2006, 43(25–26): 7727–7751.CrossRefGoogle Scholar
  22. [22]
    Foo, C.C., Cai, S., Koh, S.J.A., Bauer, S. and Suo, Z., Model of dissipative dielectric elastomers. Journal of Applied Physics, 2012, 111(3): 034102.CrossRefGoogle Scholar
  23. [23]
    Huang, J., Li, T., Foo, C.C., Zhu, J., Clarke, D.R. and Suo, Z., Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Applied Physics Letters, 2012, 100(4): 041911.CrossRefGoogle Scholar
  24. [24]
    Zhao, X.H., Koh, S.J.A. and Suo, Z.G., Nonequilibrium thermodynamics of dielectric elastomers. International Journal of Applied Mechanics, 2011, 3(2): 203–217.CrossRefGoogle Scholar
  25. [25]
    Where do the ‘Pure’ and ‘Shear’ Come From in the Pure Shear Test? In: Fatigue Life Simulation for Rubber. www.endurica.com

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2012

Authors and Affiliations

  • Shaoxing Qu
    • 1
    • 2
  • Ke Li
    • 1
    • 2
  • Tiefeng Li
    • 1
    • 2
  • Hanqing Jiang
    • 3
  • Miao Wang
    • 4
  • Zhenhua Li
    • 1
  1. 1.Department of Engineering MechanicsZhejiang UniversityHangzhouChina
  2. 2.Soft Matter Research Center (SMRC)Zhejiang UniversityHangzhouChina
  3. 3.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA
  4. 4.Department of PhysicsZhejiang UniversityHangzhouChina

Personalised recommendations