Advertisement

Acta Mechanica Solida Sinica

, Volume 25, Issue 4, pp 342–347 | Cite as

A Damage Mechanics Model for Twisted Carbon Nanotube Fibers

  • Qingqing Rong
  • Jianshan Wang
  • Yilan Kang
  • Yali Li
  • Qing-Hua Qin
Article

Abstract

Carbon nanotube fibers can be fabricated by the chemical vapor deposition spinning process. They are promising for a wide range of applications such as the building blocks of high-performance composite materials and micro-electrochemical sensors. Mechanical twisting is an effective means of enhancing the mechanical properties of carbon nanotube fibers during fabrication or by post processing. However, the effects of twisting on the mechanical properties remain an unsolved issue. In this paper, we present a two-scale damage mechanics model to quantitatively investigate the effects of twisting on the mechanical properties of carbon nanotube fibers. The numerical results demonstrate that the developed damage mechanics model can effectively describe the elastic and the plastic-like behaviors of carbon nanotube fibers during the tension process. A definite range of twisting which can effectively enhance the mechanical properties of carbon nanotube fiber is given. The results can be used to guide the mechanical twisting of carbon nanotube fibers to improve their properties and help optimize the mechanical performance of carbon nanotube-based materials.

Key words

carbon nanotube fibers damage twisting multi-level structures elastic modulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett, M. and Windle, A., High-performance carbon nanotube fiber. Science, 2007, 318(5858): 1892–1895.CrossRefGoogle Scholar
  2. [2]
    Hone, J., Whitney, M., Piskoti, C. and Zettl, A., Thermal conductivity of single-walled carbon nanotubes. Synthetic Metals, 1999, 103(1–3): 2498–2499.CrossRefGoogle Scholar
  3. [3]
    Berber, S., Kwon, Y.K. and Tomanek, D., Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613–4616.CrossRefGoogle Scholar
  4. [4]
    Zhang, X.F., Li, Q.W., Tu, Y., Li, Y.A., Coulter, J.Y., Zheng, L.X., Zhao, Y.H., Jia, Q.X., Peterson, D.E. and Zhu, Y.T., Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small, 2007, 3(2): 244–248.CrossRefGoogle Scholar
  5. [5]
    Li, Q.W., Li, Y., Zhang, X.F., Chikkannanavar, S.B., Zhao, Y.H., Dangelewicz, A.M., Zheng, L.X., Doorn, S.K., Jia, Q.X., Peterson, D.E., Arendt, P.N. and Zhu, Y.T., Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials, 2007, 19(20): 3358–3363.CrossRefGoogle Scholar
  6. [6]
    Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P. and Poulin, P., Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290(5495): 1331–1334.CrossRefGoogle Scholar
  7. [7]
    Vigolo, B., Poulin, P., Lucas, M., Launois, P. and Bernier, P., Improved structure and properties of single-wall carbon nanotube spun fibers. Applied Physics Letters, 2002, 81(7): 1210–1212.CrossRefGoogle Scholar
  8. [8]
    Jiang, K.L., Li, Q.Q. and Fan, S.S., Nanotechnology: Spinning continuous carbon nanotube yarns—Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature, 2002, 419(6909): 801–801.CrossRefGoogle Scholar
  9. [9]
    Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R. and Ajayan, P.M., Direct synthesis of long single-walled carbon nanotube strands. Science, 2002, 296(5569): 884–886.CrossRefGoogle Scholar
  10. [10]
    Li, Y.L., Kinloch, I.A. and Windle, A.H., Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304(5668): 276–278.CrossRefGoogle Scholar
  11. [11]
    Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering a—Structural Materials Properties Microstructure and Processing, 2002, 334(1–2): 173–178.CrossRefGoogle Scholar
  12. [12]
    Liew, K.M., Wong, C.H., Tan, M.J. and Chuang, P.D., Non-twisted and twisted CNT bundles under axial tensile and compressive loads. Nanoscience and Technology, Pts 1 and 2, 2007, 121–123: 1415–1418.Google Scholar
  13. [13]
    Qian, D., Liu, W.K. and Ruoff, R.S., Load transfer mechanism in carbon nanotube ropes. Composites Science and Technology, 2003, 63(11): 1561–1569.CrossRefGoogle Scholar
  14. [14]
    Liang, H.Y. and Upmanyu, M., Size dependent intrinsic bulk twisting of carbon nanotube ropes. Carbon, 2005, 43(15): 3189–3194.CrossRefGoogle Scholar
  15. [15]
    Fang, S.L., Zhang, M., Zakhidov, A.A. and Baughman, R.H., Structure and process-dependent properties of solid-state spun carbon nanotube yarns. Journal of Physics-Condensed Matter, 2010, 22(33), 334221.CrossRefGoogle Scholar
  16. [16]
    Miao, M.H., McDonnell, J., Vuckovic, L. and Hawkins, S.C., Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon, 2010, 48(10): 2802–2811.CrossRefGoogle Scholar
  17. [17]
    Sears, K., Skourtis, C., Atkinson, K., Finn, N. and Humphries, W., Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength. Carbon, 2010, 48(15): 4450–4456.CrossRefGoogle Scholar
  18. [18]
    Zhang, M., Atkinson, K.R. and Baughman, R.H., Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306(5700): 1358–1361.CrossRefGoogle Scholar
  19. [19]
    Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H., The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. Journal of Engineering Materials and Technology, 2004, 126(3): 250–257.CrossRefGoogle Scholar
  20. [20]
    Zhong, X.H., Li, Y.L., Liu, Y.K., Qiao, X.H., Feng, Y., Liang, J., Jin, J., Zhu, L., Hou, F. and Li, J.Y., Continuous multilayered carbon nanotube yarns. Advanced Materials, 2010, 22(6): 692–696.CrossRefGoogle Scholar
  21. [21]
    Li, F.M. and Li, Z.J., Continuum damage mechanics based modeling of fiber reinforced concrete in tension. International Journal of Solids and Structures, 2001, 38(5): 777–793.CrossRefGoogle Scholar
  22. [22]
    Li, Q., Kang, Y.L., Qiu, W., Li, Y.L., Huang, G.Y., Guo, J.G., Deng, W.L. and Zhong, X.H., Deformation mechanics of carbon nanotube fibers under tensile loading by in situ Raman spectroscopy analysis. Nanotechnology, 2011, 22, 225704.CrossRefGoogle Scholar
  23. [23]
    Krajcinovic, D., Damage Mechanics. Netherlands: Elsevier Science B.V., 1996.zbMATHGoogle Scholar
  24. [24]
    Liu, Y.K., Structures and Mechanical Properties of Carbon Nanotube Yarns by Mechanical Processing and Composite. M.S. Dissertation, Tianjin University, 2009, 33–42 (in Chinese).Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2012

Authors and Affiliations

  • Qingqing Rong
    • 1
  • Jianshan Wang
    • 1
  • Yilan Kang
    • 1
  • Yali Li
    • 2
  • Qing-Hua Qin
    • 3
  1. 1.Tianjin Key Laboratory of Modern Engineering Mechanics, Department of Mechanics, School of Mechanical EngineeringTianjin UniversityTianjinChina
  2. 2.Key Laboratory of Advanced Ceramics and Machining Technology, Ministry capable of Education, School of Materials Science and EngineeringTianjin UniversityTianjinChina
  3. 3.School of EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations