Advertisement

Acta Mechanica Solida Sinica

, Volume 25, Issue 3, pp 321–330 | Cite as

Mixed Modes Interlaminar Fracture Toughness of CFRP Laminates Toughened with CNF Interlayer

  • Masahiro Arai
  • Tatsuya Sasaki
  • Satoshi Hirota
  • Hiroaki Ito
  • Ning Hu
  • Marino Quaresimin
Article

Abstract

In the present paper, the influence of carbon nanofiber on interlaminar fracture toughness of CFRP investigated using MMB(Mixed Mode Bending) tests. Vapor grown carbon fiber VGCF and VGCF-S, and multi-walled carbon nanotube MWNT-7 has been employed for the toughener of the interlayer on the CFRP laminates. In order to evaluate the fracture toughness and mixed mode ratio ofit, double cantilever beam (DCB) tests, end notched fracture (ENF) tests and mixed mode bending (MMB) tests have been carried out. Boundary element analysis was applied to the CFRP model to compute the interlaminar fracture toughness, where extrapolation method was used to determine the fracture toughness and mixed mode ratio. The interlaminar fracture toughness and mixed mode ratio can be extrapolated by stress distribution in the vicinity of the crack tip of the CFRP laminate. It was found that the interlaminar fracture toughness of the CFRP laminates was improved inserting the interlayer made by carbon nanofiber especially in the region where shear mode deformation is dominant.

Key words

CFRP laminate fracture toughness interlaminar crack boundary element method interlayer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Glover, B.M., History of development of commercial aircraft and 7E7 dreamliner. Aviation Engineering, 2004, 592: 16–21.Google Scholar
  2. [2]
    Kageyama, K., Kobayashi, T., Yanagisawa, N., Kikuchi, M. and Miyamoto, H., Mode I Interlaminar Fracture Mechanics of Unidirectionally Reinforced Carbon/Nylon Laminates. Transactions of the Japan Society of Mechanical Engineers, 1987, 53(496): 2386–2393 (in Japanese).CrossRefGoogle Scholar
  3. [3]
    Gillespie, Jr. J.W., Carlsson, L.A. and Smiley, A.J., Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite peek. Composite Science and Technology, 1987, 28: 1–15.CrossRefGoogle Scholar
  4. [4]
    Mall, S., Law, G.E. and Katouzian, M., Loading rate effect on interlaminar fracture toughness of thermoplastic composite. Journal of Composite Materials, 1987, 21-June: 569–579.CrossRefGoogle Scholar
  5. [5]
    Shi, Y.B. and Hull, D., Fracture of delaminated unidirectional composite beams. Journal of Composite Materials, 1992, 26(15): 2172–2195.CrossRefGoogle Scholar
  6. [6]
    Wilkins, D.J., Eisenmann, J.R., Camin, R.A., Margolis, W.S. and Benson, R.A., Characterizing delamination growth in graphite-epoxy. In: Damage in Composite Materials, Ed. Reifsnider KL, American Society for Testing and Materials, ASTM STP 775, 1982: 168–183.Google Scholar
  7. [7]
    Carlsson, L.A., Gillepie, J.W. and Trethewey, B.R., Mode II interlaminar fracture of graphite/epoxy and graphite/peek. Journal of Reinforced Plastics and Composites, 1986, 5-July: 170–187.CrossRefGoogle Scholar
  8. [8]
    Maikuma, H., Gillespie, J.W. and Wilkins, D.J., Mode II interlaminar fracture of the center notched flexural specimen under impact loading. Journal of Composite Materials, 1990, 24-February: 124–149.CrossRefGoogle Scholar
  9. [9]
    Valisetty, R.R. and Chamis, C.C., Sublaminate- or ply-level analysis of composite and strain energy release rates of end-noch and mixed-mode fracture specimens. In: Composite Materials: Testing and Design(Eighth Conference), ASTM STP 9u72, Ed., Whitcomb, J.D., American Society for Testing Materials, 1988: 41–56.Google Scholar
  10. [10]
    Sela, N., Ishiai, O. and Banks-Sills, L., The effect of adhesive thickness on interlaminar fracture toughness of interleaved laminates specimens. Composite, 1989, 20(3): 257–264.CrossRefGoogle Scholar
  11. [11]
    Singh, S. and Partridge, I.K., Mixed mode fracture in and interleaved carbon-fiber/epoxy composite. Composite Science and Technology, 1995, 55: 319–327.CrossRefGoogle Scholar
  12. [12]
    Hojo, M., Matsuda, S., Tanaka, M., Ochiai, S. and Murakami, A., Mode I delamination fatigue properties of interlayer-toughned CF/epoxy laminates. Composites Science and Technology, 2006, 66: 665–675.CrossRefGoogle Scholar
  13. [13]
    Hojo, M., Ando, T., Tanaka, M., Adachi, T., Ochiai, S. and Endo, Y., Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. International Journal of Fatigue, 2006, 28(10): 1154–1165.CrossRefGoogle Scholar
  14. [14]
    Matsuda, S., Hojo, M. and Ochiai, S., Mesoscopic fracture mechanism of interleaf-toughned CFRP. JSME International Journal (Series A), 1997, 40(4): 423–429.CrossRefGoogle Scholar
  15. [15]
    Oberlin, A., Endo, M. and Koyama, T., Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 1976, 32: 335–349.CrossRefGoogle Scholar
  16. [16]
    Endo, M., Grow carbon fibers in the vapor phase. Chemtech, 1988, September: 568–576.Google Scholar
  17. [17]
    Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58.CrossRefGoogle Scholar
  18. [18]
    Sandler, J., Werner, P., Shafer, M.S.P., Demchuk, V. and Altstadt, V., Carbon-nanofibre-reinforced poly (ether ether ketone) composite. Composites Part A, 2002, 33: 1033–1039.CrossRefGoogle Scholar
  19. [19]
    Yamamoto, G., Hashida, T., Omori, M. and Kimura, H., Reinforcement of Alumina with surface modified carbon nanotube. Materials Science Forum, 2010, 631–632: 231–236.Google Scholar
  20. [20]
    Hu. N., Masuda. Z., Yamamoto, G., Fukunaga, H., Hashida, T. and Qiu, J., Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites. Composites Part A, 2008, 39: 893–903.CrossRefGoogle Scholar
  21. [21]
    Arai, M., Noro, Y., Sugimoto, K. and Endo, M., Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Journal of Composites Science and Technology, 2008, 68(2): 516–525.CrossRefGoogle Scholar
  22. [22]
    Yokozeki, T., Iwahori, Y., Ishibashi, M., Yanagisawa, T., Imai, K., Arai, M., Takahashi, T. and Enomoto, K., Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes. Journal of Composites Science and Technology, 2009, 69(14): 2268–2273.CrossRefGoogle Scholar
  23. [23]
    Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y. and Fukunaga, H., Improvement of interlaminar mehcanical properties of CFRP laminates using VGCF. Composites Part A, 2009, 40: 2004–2012.CrossRefGoogle Scholar
  24. [24]
    Reeder, J.R. and Crews Jr. J.H., Mixed-mode bending method for delamination testing. AIAA Journal, 1990, 28(7): 1270–1276.CrossRefGoogle Scholar
  25. [25]
    Reeder, J.R. and Crews Jr., J.H., Redesign of the mixed-mode bending delamination test to reduce non-linear effects. Journal of Composites Technology and Research, 1992, 14: 12–19.CrossRefGoogle Scholar
  26. [26]
    Chen, J.H., Sernow, R., Schulz, E. and Hinrichsen, G., A modification of the mixed-mode bending test apparatus. Composities Part A, 1999, 30: 871–877.CrossRefGoogle Scholar
  27. [27]
    Arai, M., Takagi, T., Kuwahara, T. and Adachi, T., Evaluation of interlaminer fracture toughness of cross-ply CFRP laminates using mixed mode bending test. Transactions of the JSME Series A, 2004, 70(698): 1356–1363 (in Japanese).CrossRefGoogle Scholar
  28. [28]
    Arai, M., Sumida, T. and Shimizu, M., Effect of residual stress on interlaminar fracture toughness of CFRP laminates. Journal of Thermal Stress, 2007, 30: 1099–1116.CrossRefGoogle Scholar
  29. [29]
    Dunders, J., Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. Journal of Applied Mechanics, 1969, 36: 650–652.CrossRefGoogle Scholar
  30. [30]
    Dunders, J., Effects of elastic constants on stress in a composite under plane deformation. Journal of Composite Material, 1967, 1(4): 310–322.CrossRefGoogle Scholar
  31. [31]
    Suo. Z., Singularities, interface and cracks in dissimilar anisotropic media. Proceedings of the Royal Society of London Series A, 1990, 427: 331–358.MathSciNetCrossRefGoogle Scholar
  32. [32]
    Yuuki, R. and Jinquan, X., Stress intensity factors for the interface crack between dissimilar orthotropic materials. Transactions of the JSME Series A, 1991, 57(539): 1542–1549 (in Japanese).CrossRefGoogle Scholar
  33. [33]
    Cho, S.B., Lee, K.R., Choy, Y.S. and Yuuki, R., Determination of stress intensity factors and boundary element analysis for interface cracks in dissimilar anisotropic materials. Engineering Fracture Mechanics, 1992, 43(4): 603–614.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2012

Authors and Affiliations

  • Masahiro Arai
    • 1
  • Tatsuya Sasaki
    • 1
  • Satoshi Hirota
    • 1
  • Hiroaki Ito
    • 1
  • Ning Hu
    • 2
  • Marino Quaresimin
    • 3
  1. 1.Shinshu UniversityNaganoJapan
  2. 2.Chiba UniversityChibaJapan
  3. 3.University of PadovaVicenzaItaly

Personalised recommendations