Acta Mechanica Solida Sinica

, Volume 24, Issue 4, pp 318–325 | Cite as

Effect of Head Shape on the Adhesion Capability of Mushroom-Like Biological Adhesive Structures

Article

Abstract

Theoretical studies have been extensively performed to reveal the mechanism of the biological adhesive structure with a flat head. However, most biological adhesive structures have a big head. Here we investigate the effect of the head shape on the adhesion capability of a mushroom-like adhesion structure based on a finite element model. We show that a mushroom-like head produces significant adhesion enhancement. We investigate also the effect of the elastic modulus of the adhesive structure on the adhesion. Our results are consistent with existing experimental results.

Key words

biological adhesion effect of head shape fracture mechanics FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Stork, N.E., Experimental analysis of adhesion of chrysolina polita (chrysomelidae: coleoptera) on a variety of surfaces. Journal of Experimental Biology, 1980, 88(1): 91–108.Google Scholar
  2. [2]
    Rodolfo Ruibal, V.E., The structure of the digital setae of lizards. Journal of Morphology, 1965, 117(3): 271–293.CrossRefGoogle Scholar
  3. [3]
    Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R. and Full, R.J., Adhesive force of a single gecko foot-hair. Nature, 2000, 405(6787): 681–685.CrossRefGoogle Scholar
  4. [4]
    Arzt, E., Gorb, S. and Spolenak, R., From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10603–10606.CrossRefGoogle Scholar
  5. [5]
    Dai, Z.D. and Sun, J.R., Research progress in gecko locomotion and biomimetic gecko-robots. Progress in Natural Science, 2007, 17(1): 1–5.Google Scholar
  6. [6]
    Sitti, M. and Fearing, R.S., Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology, 2003, 17(8): 1055–1073.CrossRefGoogle Scholar
  7. [7]
    Autumn, K., Hsieh, S.T., Dudek, D.M., Chen, J., Chitaphan, C. and Full, R.J., Dynamics of geckos running vertically. Journal of Experimental Biology, 2006, 209(2): 260–272.CrossRefGoogle Scholar
  8. [8]
    Autumn, K. and Gravish, N., Gecko adhesion: evolutionary nanotechnology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 366(1870): 1575–1590.CrossRefGoogle Scholar
  9. [9]
    Guo, W.L., Xie, H.M. and Zheng, Q.S., Current trends of micro- and nanomechanics. Acta Mechanica Solida Sinica, 2009, 22(6): I–III.CrossRefGoogle Scholar
  10. [10]
    Kim, T.W. and Bhushan, B., Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. Journal of Adhesion Science and Technology, 2007, 21: 1–20.CrossRefGoogle Scholar
  11. [11]
    Yao, H.M. and Gao, H.J., Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids, 2006, 54(6): 1120–1146.CrossRefGoogle Scholar
  12. [12]
    Betul, Y., Raravikar, N.R., Ajayanb, P.M. and Dhinojwala, A., Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chemical communications, 2005, 3799–3801.Google Scholar
  13. [13]
    Majidi, C., Groff, R.E., Maeno, Y., Schubert, B., Baek, S., Bush, B., Maboudian, R., Gravish, N., Wilkinson, M., Autumn, K. and Fearing, R.S., High friction from a stiff polymer using microfiber arrays. Physical Review Letters, 2006, 97(7): 076103.CrossRefGoogle Scholar
  14. [14]
    Kim, S. and Sitti, M., Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Applied Physics Letters, 2006, 89(26): 261911–261913.CrossRefGoogle Scholar
  15. [15]
    Sameoto, D., Li, Y.S. and Menon, C., Multi-scale compliant foot designs and fabrication for use with a spider-inspired climbing robot. Journal of Bionic Engineering, 2008, 5(3): 189–196.CrossRefGoogle Scholar
  16. [16]
    Jeong, H.E., Lee, J.-K., Kim, H.N., Moon, S.H. and Suh, K.Y., A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences, 2009, 106(14): 5639–5644.CrossRefGoogle Scholar
  17. [17]
    Murphy, M.P., Kim, S. and Sitti, M., Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces, 2009, 1(4): 849–855.CrossRefGoogle Scholar
  18. [18]
    Dai, Z.D., Sun, J.R., Yue, D., Guo, C., Cheng, H., Yu, M. and Ji, A.H., Morphology and contact mechanics influence adhesive characteristics of Dung Beetle’s bristle and Gecko’s setae. Progress in Natural Science, 2007, 17(9): 1074–1081.Google Scholar
  19. [19]
    Gao, H.J. and Yao, H.M., Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 7851–7856.CrossRefGoogle Scholar
  20. [20]
    Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N. and Full, R.J., Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19): 12252–12256.CrossRefGoogle Scholar
  21. [21]
    Tian, Y., Pesika, N., Zeng, H., Rosenberg, K., Zhao, B., McGuiggan, P., Autumn, K. and Israelachvili, J., Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences, 2006, 103(51): 19320–19325.CrossRefGoogle Scholar
  22. [22]
    Kim, T.W. and Bhushan, B., The adhesion model considering capillarity for gecko attachment system. Journal of the Royal Society Interface, 2008, 5(20): 319–327.CrossRefGoogle Scholar
  23. [23]
    Yamaguchi, T., Gravish, N., Autumn, K. and Creton, C., Microscopic modeling of the dynamics of frictional adhesion in the gecko attachment system. The Journal of Physical Chemistry B, 2008, 113(12): 3622–3628.CrossRefGoogle Scholar
  24. [24]
    Gasparetto, A., Seidl, T. and Vidoni, R., A mechanical model for the adhesion of spiders to nominally flat surfaces. Journal of Bionic Engineering, 2009, 6(2): 135–142.CrossRefGoogle Scholar
  25. [25]
    Chen, S.H. and Gao, H.J., Non-slipping adhesive contact of an elastic cylinder on stretched substrates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2006, 462(2065): 211–228.MathSciNetCrossRefGoogle Scholar
  26. [26]
    Chen, S.H. and Gao, H.J., Bio-inspired mechanics of reversible adhesion: Orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. Journal of the Mechanics and Physics of Solids, 2007, 55(5): 1001–1015.CrossRefGoogle Scholar
  27. [27]
    Shi, W., Feng, X.Q. and Gao, H., Optimal substrate shape for vesicle adhesion on a curved substrate. Molecular & Cellular Biomechanics, 2006, 3(3): 121–125.MATHGoogle Scholar
  28. [28]
    He, L.H., Lim, C.W. and Wu, B.S., A continuum model for size-dependent deformation of elastic films of nano-scale thickness. International Journal of Solids and Structures, 2004, 41(3–4): 847–857.CrossRefGoogle Scholar
  29. [29]
    Li, Q.Y. and Kim, K.S., Micromechanics of rough surface adhesion: a homogenized projection method. Acta Mechanica Solida Sinica, 2009, 22(5): 377–390.CrossRefGoogle Scholar
  30. [30]
    Huber, G., Gorb, S.N., Spolenak, R. and Arzt, E., Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biology Letters, 2005, 1(1): 2–4.CrossRefGoogle Scholar
  31. [31]
    Su, Y.W., Ji, B.H., Huang, Y.G. and Hwang, K., Effects of contact shape on biological wet adhesion. Journal of Materials Science, 2007, 42(21): 8885–8893.CrossRefGoogle Scholar
  32. [32]
    Su, Y.W., Ji, B.H., Huang, Y.G. and Hwang, K., Concave biological surfaces for strong wet adhesion. Acta Mechanica Solida Sinica, 2009, 22(6): 593–604.CrossRefGoogle Scholar
  33. [33]
    Chen, S.H. and Soh, A.K., The capillary force in micro- and nano-indentation with different indenter shapes. International Journal of Solids and Structures, 2008, 45(10): 3122–3137.CrossRefGoogle Scholar
  34. [34]
    Spolenak, R., Gorb, S., Gao, H. and Arzt, E., Effects of contact shape on the scaling of biological attachments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2005, 461(2054): 305–319.CrossRefGoogle Scholar
  35. [35]
    del Campo, A., Greiner, C. and Arzt, E., Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir, 2007, 23(20): 10235–10243.CrossRefGoogle Scholar
  36. [36]
    Gorb, S., Varenberg, M., Peressadko, A. and Tuma, J., Biomimetic mushroom-shaped fibrillar adhesive microstructure. Journal of the Royal Society Interface, 2007, 4(13): 271–275.CrossRefGoogle Scholar
  37. [37]
    Gao, H.J., Wang, X., Yao, H.M., Gorb, S. and Arzt, E., Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 2005, 37(2–3): 275–285.CrossRefGoogle Scholar
  38. [38]
    Yao, H.M. and Gao, H.J., Optimal shapes for adhesive binding between two elastic bodies. Journal of Colloid and Interface Science, 2006, 298(2): 564–572.CrossRefGoogle Scholar
  39. [39]
    Dahlquist, C.A., Pressure-sensitive adhesives, in: Patrick, R.L.) (Ed.), Treatise on adhesion and adhesives, Vol.2, M. Dekker, New York, 1969, 219–260.Google Scholar
  40. [40]
    Pocius, A.V., Adhesion and Adhesives Technology: An Introduction, 2 ed. Hanser Gardner, Cincinnati, 2002.Google Scholar
  41. [41]
    Autumn, K., Majidi, C., Groff, R.E., Dittmore, A. and Fearing, R., Effective elastic modulus of isolated gecko setal arrays. Journal of Experimental Biology, 2006, 209(18): 3558–3568.CrossRefGoogle Scholar
  42. [42]
    Zhao, Y., Tong, T., Delzeit, L., Kashani, A., Meyyappan, M. and Majumdar, A., Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. Journal of Vacuum Science & Technology B, 2006, 24(1): 331–335.CrossRefGoogle Scholar
  43. [43]
    Ge, L., Sethi, S., Ci, L., Ajayan, P.M. and Dhinojwala, A., Carbon nanotube-based synthetic gecko tapes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(26): 10792–10795.CrossRefGoogle Scholar
  44. [44]
    Qu, L. and Dai, L., Gecko-foot-mimetic aligned single-walled aarbon nanotube dry adhesives with unique electrical and thermal properties. Advanced Materials, 2007, 19(22): 3844–3849.CrossRefGoogle Scholar
  45. [45]
    Qu, L., Dai, L., Stone, M., Xia, Z. and Wang, Z.L., Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science, 2008, 322(5899): 238–242.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2011

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and MechanicsShanghaiChina

Personalised recommendations