Acta Mechanica Solida Sinica

, Volume 22, Issue 1, pp 1–17 | Cite as

Interaction models for effective thermal and electric conductivities of carbon nanotube composites

  • Fei Deng
  • Quanshui Zheng


The present article provides supplementary information of previous works of analytic models for predicting conductivity enhancements of carbon nanotube composites. The models, though fairly simple, are able to take account of the effects of conductivity anisotropy, nonstraightness, and aspect ratio of the CNT additives on the conductivity enhancement of the composite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities.

Key words

thermal conductivity electric conductivity carbon nanotube composite interaction effective models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Deng, F., Zheng, Q.S., Wang, L.F. and Nan, C.W., Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Applied Physics Letters, 2007, 90: 021914.CrossRefGoogle Scholar
  2. [2]
    Deng, F. and Zheng, Q.S., An analytical model of effective electrical conductivity of carbon nanotube composites. Applied Physics Letters, 2008, 92: 071902.CrossRefGoogle Scholar
  3. [3]
    Zheng, Q.S. and Du, D.X., An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. Journal of the Mechanics and Physics of Solids, 2001, 49: 2765–2788.CrossRefGoogle Scholar
  4. [4]
    Kim, P., Shi, L., Majumdar, A. and McEuen, P.L., Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 2001, 87: 215502.CrossRefGoogle Scholar
  5. [5]
    Pop, E., Mann, D., Wang, Q. Goodson, K. and Dai, H., Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters, 2006, 6(1): 96–100.CrossRefGoogle Scholar
  6. [6]
    Yu, C., Shi, L., Yao, Z., Li, D. and Majumdar, A., Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters, 2005, 5(9): 1842–1846.CrossRefGoogle Scholar
  7. [7]
    Dai, H.J., Wong, E.W. and Lieber, C.M., Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 1996, 272: 523–526.CrossRefGoogle Scholar
  8. [8]
    Ebbsen, T.W., Lezec, H.J., Hiura, H.J., Bennett, W., Ghaemi, H.F. and Thio, T., Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382: 54–56.CrossRefGoogle Scholar
  9. [9]
    Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E. and Grulke, E.A., Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 2001, 79: 2252–2254.CrossRefGoogle Scholar
  10. [10]
    Nan, C.W., Shi, Z. and Lin, Y., A simple model for thermal conductivity of carbon nanotube-based composites. Chemical Physics Letters, 2003, 375: 666–669.CrossRefGoogle Scholar
  11. [11]
    Nan, C.W., Liu, G., Lin, Y. and Li, M., Interface effect on thermal conductivity of carbon nanotube composites. Applied Physics Letters, 2004, 85: 3549–3551.CrossRefGoogle Scholar
  12. [12]
    Huxtable, S., Cahill, D.G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M.S., Siddons, G., Shim, M. and Keblinski, P., Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003, 2: 731–734.CrossRefGoogle Scholar
  13. [13]
    Chen, T.Y., Wen, G. and Liu, W.C., Effect of Kapitza contact and consideration of tube-end transport on the effective conductivity in nanotube-based composites. Journal of Applied Physics, 2005, 97: 104312.CrossRefGoogle Scholar
  14. [14]
    Milton, G.W., The Theory Of Composites, New York: Cambridge University Press, 2002.CrossRefGoogle Scholar
  15. [15]
    Ramasubramaniam, R. and Chen, J., Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 2003, 83: 2928–2930.CrossRefGoogle Scholar
  16. [16]
    Grunlan, J.C., Mehrabi, A.R., Bannon, M.V. and Bahr, J.L., Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Advanced Materials, 2004, 16(2): 150–153.CrossRefGoogle Scholar
  17. [17]
    Ahmad, K., Pan, W. and Shi, S.L., Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Applied Physics Letters, 2006, 89: 133122.CrossRefGoogle Scholar
  18. [18]
    Du, F.M., Fischer, J.E. and Winey, K.I., Effect of nanotube alignment on percolation conductivity in carbon nanotubepolymer composites. Physical Review B, 2005, 72: 121404.CrossRefGoogle Scholar
  19. [19]
    Ounaies, Z., Park, C., Wise, K.E., Siochi, E.J. and Harrison, J.S., Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology, 2003, 63: 1637–1646.CrossRefGoogle Scholar
  20. [20]
    Bryning, M.B., Islam, M.F., Kikkawa, J.M. and Yodh, A.G., Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Advanced Materials, 2005, 17: 1186–1191.CrossRefGoogle Scholar
  21. [21]
    Geoffrey, G., Percolation, 2nd ed. New York: Springer, 1999.zbMATHGoogle Scholar
  22. [22]
    Kirkpatrick, S., Percolation and Conduction. Review of Modern Physics, 1973, 45(4): 574–588.CrossRefGoogle Scholar
  23. [23]
    Du, D.X. and Zheng, Q.S., A further exploration of the interaction direct derivative (IDD) estimate for the effective properties of muhiphase composites taking into account inclusion distribution. Acta Mechanica, 2002, 157: 61–81.CrossRefGoogle Scholar
  24. [24]
    Mura, T., Micromechanics of Defects in Solids. Martinus Nijhoff: Dordrecht, 1987.CrossRefGoogle Scholar
  25. [25]
    Kelly, B.T., Physics of Graphite. London: Applied Science, 1981.Google Scholar
  26. [26]
    Hooker, C.N., Ubbelohde, A.R. and Young, D.A., Anisotropy of thermal conductance in near-ideal graphite. Proceedings of the Royal Society of London Series A, 1965, 284: 17–31.CrossRefGoogle Scholar
  27. [27]
    Che, J.W. Çagin, T. and Goddard III, W.A., Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11: 65–69.CrossRefGoogle Scholar
  28. [28]
    Zhou, W., Islam, M.F., Wang, H., Ho, D.L., Yodh, A.G., Winey, K.I. and Fischer, J.E., Small angle neutron scattering from single-wall carbon nanotube suspensions, evidence for isolated rigid rods and rod networks. Chemical Physics Letters, 2004, 384: 185–189.CrossRefGoogle Scholar
  29. [29]
    Jang, H.S., Lee, H.R. and Kim, D.H., Field emission properties of carbon nanotubes with different morphologies. Thin Solid films, 2006, 500: 124–128.CrossRefGoogle Scholar
  30. [30]
    Song, P.C., Liu, C.H. and Fan, S.S., Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes. Applied Physics Letters, 2006, 88: 153111.CrossRefGoogle Scholar
  31. [31]
    Duggal, R. and Pasquali, M., Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Physical Review Letters, 2006, 96: 246104.CrossRefGoogle Scholar
  32. [32]
    Lee, H.S., Yun, C.H., Kim, H.M. and Lee, C.J., Persistence length of multiwalled carbon nanotubes with static bending. Journal of Physical Chemistry C, 2007, 111: 18882–18887.CrossRefGoogle Scholar
  33. [33]
    Ahir, S.V. and Terentjev, E.M., Thermal fluctuations, stress relaxation, and actuation in carbon nanotube networks. Physical Review B, 2007, 76: 165437.CrossRefGoogle Scholar
  34. [34]
    Geblinger, N., Ismach, A. and Joselevich, E., Self-organized nanotube serpentines. Nature nanotechnology, 2008, 3: 195–200.CrossRefGoogle Scholar
  35. [35]
    Shenogina, N., Shenogin, S., Xue, L. and Keblinski, P., On the lack of thermal percolation in carbon nanotube composites. Applied Physics Letters, 2005, 87: 133106.CrossRefGoogle Scholar
  36. [36]
    Frank, S., Poncharal, P., Wang, Z.L. and W.A. de Heer, Carbon nanotube quantum resistors. Science, 1998, 280: 1744–1746.CrossRefGoogle Scholar
  37. [37]
    Liang, W.J., Bockrath, M., Bozovic, D., Hafner, J.H., Tinkham, M. and Park, H., Perot interference in a nanotube electron waveguide. Nature, 2001, 411: 665.CrossRefGoogle Scholar
  38. [38]
    Brandrup, J. and Immergut, E.H., Polymer Handbook, 3rd ed. New York: Wiley Interscience, 1989.Google Scholar
  39. [39]
    Rouby, D., Gobin, F. and Bonjour, E., Anelastic relaxation peaks in graphites after neutron irradiation at low temperature. Philosophical Magazine, 1974, 29: 983–999.CrossRefGoogle Scholar
  40. [40]
    Bonjour, E., Le Diouron, R., Fiorese, G., Rouby, D. and Gob, P.F., Young’s modulus and internal friction of graphite irradiated at low temperature. Radiation Effects and Defects in Solids, 1971, 11: 155–165.CrossRefGoogle Scholar
  41. [41]
    Mitchell, E.J.W. and Taylor, M. R., Mechanism of stored-energy release at 200°C in electron-irradiated graphite. Nature, 1965, 208: 638–641.CrossRefGoogle Scholar
  42. [42]
    Foygel, M., Morris, R.D., Anez, D., French, S. and Sobolev, V.L., Theoretical and computational studies of carbon nanotube composites and suspensions, Electrical and thermal conductivity. Physical Review B, 2005, 71: 104201.CrossRefGoogle Scholar
  43. [43]
    Balberg, I., Anderson, C.H., Alexander, S. and Wagner, N., Excluded volume and its relation to the onset of percolation. Physical Review B, 1984, 30: 3933–3943.CrossRefGoogle Scholar
  44. [44]
    Bug, A.L.R., Safran, S.A. and Webman, I., Continuum percolation of rods. Physical Review Letters, 1985, 54: 1412–1415.CrossRefGoogle Scholar
  45. [45]
    Gao, L. and Li, Z.Y., Effective medium approximation for two-component nonlinear composites with shape distribution. Journal of Physics: Condensed Matter, 2003, 15: 4397.Google Scholar
  46. [46]
    Bergman, D.J. Composite Media and Homogenization Theory. Boston: Birkhauser, 1991.Google Scholar
  47. [47]
    Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media, 2nd ed. Oxford: Pergamon, 1984.zbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2009

Authors and Affiliations

  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations