Skip to main content
Log in

On Behaviors of Functionally Graded SMAs under Thermo-Mechanical Coupling

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

An analytical solution is obtained for the Functionally Graded Shape Memory Alloy (FG-SMA) composites subjected to thermo-mechanical coupling. Young’s modulus and thermal expansion coefficient of the material are assumed to vary in different forms of power function through the thickness, with the Poisson’s ratio being constant. An SMA constitutive model is combined with the averaging techniques of composite to determine the mechanical properties of the FG-SMA composites. Different phase transformation steps and the corresponding stress distributions through the thickness direction are given. The results show that the average stresses decrease as the transformations proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghababaei, R. and Joshi, S.P., Micromechanics of crystallographic size-effects in metal matrix composites induced by thermo-mechanical loading. International Journal of Plasticity, 2013, 42: 65–82.

    Article  Google Scholar 

  2. Eisenlohr, P., Diehl, M., Lebensohn, R.A. and Roters, F., A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity, 2013, 46: 37–53.

    Article  Google Scholar 

  3. Chen, Y.L. and Ghosh, S., Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading conditions. International Journal of Plasticity, 2012, 32–33: 218–247.

    Google Scholar 

  4. Liu, B.F., Dui, G.S. and Zhu, Y.P., A constitutive model for porous shape memory alloys considering the effect of hydrostatic stress. CMES-Computer Modeling in Engineering & Science, 2011, 78(4): 247–275.

    Google Scholar 

  5. Shabana, Y.M. and Noda, N., Thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses of the fabrication process into consideration. Composites: Part B, 2001, 32: 111–121.

    Article  Google Scholar 

  6. Shao, Z.S. and Wang, T.J., Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length and subjected to thermal mechanical loads. International Journal of Solids and Structures, 2006, 43: 3856–3874.

    Article  Google Scholar 

  7. Wang, J.P., Chen, G. and Zhai, P.C., Creep property of functionally graded materials. Materials Science Forum, 2005, 492–493: 441–446.

    Google Scholar 

  8. Yin, H.M., Paulino, G.H., Buttlar, W.G. and Sun, L.Z., Effective thermal conductivity of two-phase functionally graded particulate composites. Journal of Applied Physics, 2005, 98: 063704.

    Article  Google Scholar 

  9. Chen, B. and Tong, L., Sensitivity analysis of heat conduction for functionally graded materials. Material Design, 2004, 25: 663–672.

    Article  Google Scholar 

  10. Guler, M.A. and Erdogan, F., Contact mechanics of graded coatings. International Journal of Solids and Structures, 2004 41: 3865–3889.

    Article  Google Scholar 

  11. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G., Functionally Graded Materials: Design, Processing and Applications. Dordrecht: KluwerAcademic Publishers, 1999.

    Book  Google Scholar 

  12. Benafan, O., Noebe, R.D., Padula II, S.A., Brown, D.W., Vogel, S. and Vaidyanathan, R., Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. International Journal of Plasticity, 2014, 56: 99–118.

    Article  Google Scholar 

  13. Yu, C., Kang, G.Z. and Kan, Q.H., Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation. International Journal of Plasticity, 2014, 54: 132–162.

    Article  Google Scholar 

  14. Yu, C., Kang, G.Z., Kan, Q.H. and Song, D., A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys. International Journal of Plasticity, 2013, 44: 161–191.

    Article  Google Scholar 

  15. Lagoudas, D.C., Hartl, D., Chemisky, Y., Machado, L. and Popov, P., Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. International Journal of Plasticity, 2012, 32–33: 155–183.

    Google Scholar 

  16. Morin, C., Moumni, Z. and Zaki, W., Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. International Journal of Plasticity, 2011, 27(12): 1959–1980.

    Article  Google Scholar 

  17. Liu, B.F., Dui, G.S. and Yang, S.Y., On the transformation behavior of functionally graded SMA composites subjected to thermal loading. European Journal of Mechanics A—Solids, 2013, 40: 39–147.

    Article  MathSciNet  Google Scholar 

  18. Miyazaki, E. and Watanabe, Y., Development of shape memory alloy fiber reinforced smart FGMs. Materials Science Forum, 2003, 423–425: 107–112.

    Google Scholar 

  19. Lester, B.T., Chenisky, Y. and Lagoudas, D.C., Transformation characteristics of shape memory alloy composites. Smart Materials & Structures, 2012, 20: 1–13.

    Google Scholar 

  20. Zheng, B., Xu, J. and Qi, M., Preparation of graded DLC film on TiNi SMA by plasma enhanced deposition and behavior of corrosion-resistance. Journal of Functional Materials, 2007, 38(1): 115–118.

    Google Scholar 

  21. Mahmud, A.S., Liu, Y.N. and Nam, T.H., Gradient anneal of functionally graded NiTi. Smart Materials & Structures, 2008, 17: 1–5.

    Article  Google Scholar 

  22. Qidwai, M.A., Entchrv, P.B., Lagoudas, D.C. and DeGiorgi, V.G. Modeling of the thermomechanical behavior of porous shape memory alloys. International Journal of Solids and Structures, 2001, 38: 8653–8671.

    Article  Google Scholar 

  23. Birnbaum, A.J. Satoh, G. and Yao, Y.L. Functionally grading the shape memory response in NiTi films. Journal of Applied Physics, 2009, 106(4): 043504-043504-8.

    Article  Google Scholar 

  24. Zhang, Y.P., Zhang, X.P. and Zhong, Z.Y., Fabrication, transformation and superelasticity behavior of NiTi memory alloy with large pore-size and gradient porosity. Aata Metallurgica Sinica, 2007, 43(11): 1221–1227.

    Google Scholar 

  25. Fu, Y.L., Du, H.J. and Zhang, S., Functionally graded TiN/TiNi shape memory alloy films. Materials Letters, 2003, 57: 2995–2999.

    Article  Google Scholar 

  26. Berrabah, H.M., Mechab, I., Tounsi, A., Benyoucef, S., Krour, B., Fekrar, A. and Adda Bedia, E.A., Electro-elastic stresses in composite active beams with functionally graded layer. Computational Materials Science, 2010, 48: 366–371.

    Article  Google Scholar 

  27. Zhong, Z. and Shang, E.T., Three dimensional exact analysis of a simply supported functionally gradient plate. International Journal of Solids and Structures, 2003, 40: 5335–5352.

    Article  Google Scholar 

  28. Pitakthapanaphong, S. and Busso, E.P., Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 2002, 50: 695–716.

    Article  Google Scholar 

  29. Birman, V., Review of mechanics of shape memory alloy structures. Applied Mechanics Reviews, 1997, 50: 629–645.

    Article  Google Scholar 

  30. Xue, L.J., Dui, G.S. and Liu, B.F., Theoretical analysis of functionally graded shape memory alloy beam subjected to pure bending. Journal of Mechanical Engineering, 2012, 48(22): 40–45 (in Chinese).

    Article  Google Scholar 

  31. Zhao, Y., Taya, M., Kang, Y.S. and Kawasaki, A., Compression behavior of porous Ni-Ti shape memory alloy. Acta Materialia, 2005, 53: 337–343.

    Article  Google Scholar 

  32. Boyd, J.G. and Lagoudas, D.C., A thermodynamic constitutive model for the shape memory alloy materials. Part I. the monolithic shape memory alloy. International Journal of Plasticity, 1996, 12: 805–842.

    Article  Google Scholar 

  33. Qidwai, M.A. and Lagoudas, D.C., On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. International Journal of Plasticity, 2000, 16: 1309–1343.

    Article  Google Scholar 

  34. Sepiani, H., Ebrahimi, F. and Karimipour, H., A mathematical model for smart functionally graded beam integrated with shape memory alloy actuators. Journal of Mechanical Science and Technology, 2009, 23: 3179–3190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingfei Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11502284), the Tianjin Natural Science Foundation (No. 15JCQNJC42600) and the Fundamental Research Funds for the Central Universities of China (No. 3122014C015) and the open fund of the airport project (No. JCGC2015KFJJ005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Ni, P. & Zhang, W. On Behaviors of Functionally Graded SMAs under Thermo-Mechanical Coupling. Acta Mech. Solida Sin. 29, 46–58 (2016). https://doi.org/10.1016/S0894-9166(16)60006-X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(16)60006-X

Key Words

Navigation