Skip to main content
Log in

Effects of SI, N and B Doping on the Mechanical Properties of Graphene Sheets

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations were performed to stretch the rectangular graphene sheets doped with silicon, nitrogen or boron atoms. Young’s modulus, ultimate stress (strain) and energy absorption were measured for the graphene sheets with the doping concentration (DC) ranging from 0 to 5%. The emphasis was placed on the distinct effects of each individual dopant on the fundamental mechanical properties of graphene. The results indicated that incorporating the dopants into graphene led to an almost linear decrease in Young’s modulus. Monotonic reductions in ultimate strength, ultimate strain and energy absorption were also observed. Such doping effects were found to be most significant for silicon, less pronounced for boron, and small or negligible for nitrogen. The outputs provide an important guidance for the development and optimization of novel nanoscale devices, and facilitate the development of graphene-based M/NEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al., Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669.

    Article  Google Scholar 

  2. van den Brink, J., Graphene: from strength to strength. Nature Nanotechnology, 2007, 2(4): 199–201.

    Article  Google Scholar 

  3. Geim, A.K. and Novoselov, K.S., The rise of graphene. Nature Materials, 2007, 6(3): 183–191.

    Article  Google Scholar 

  4. Lee, C., Wei, X., Kysar, J.W. and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388.

    Article  Google Scholar 

  5. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907.

    Article  Google Scholar 

  6. Areshkin, D.A. and White, C.T., Building blocks for integrated graphene circuits. Nano Letters, 2007, 7(11): 3253–3259.

    Article  Google Scholar 

  7. Brownson, D.A.C. and Banks, C.E., Limitations of CVD graphene when utilised towards the sensing of heavy metals. Rsc Advances, 2012, 2(12): 5385–5389.

    Article  Google Scholar 

  8. Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010, 5(7): 487–496.

    Article  Google Scholar 

  9. Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. and Kim, K., A roadmap for graphene. Nature, 2012, 490(7419): 192–200.

    Article  Google Scholar 

  10. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. and Iijima, S., Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002): 870–873.

    Article  Google Scholar 

  11. Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. and Zettl, A., Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 2008, 8(11): 3582–3586.

    Article  Google Scholar 

  12. Carr, L.D. and Lusk, M.T., Defect engineering: Graphene gets designer defects. Nature Nanotechnology, 2010, 5(5): 316–317.

    Article  Google Scholar 

  13. He, L.C., Guo, S.S., Lei, J.C., Sha, Z.D. and Liu, Z.S., The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon, 2014, 75: 124–132.

    Article  Google Scholar 

  14. Sha, Z.D., Pei, Q.X., Liu, Z.S., Shenoy, V.B. and Zhang, Y.W., Is the failure of large-area polycrystalline graphene notch sensitive or insensitive? Carbon, 2014, 72: 200–206.

    Article  Google Scholar 

  15. Sha, Z.D., Quek, S.S., Pei, Q.X., Liu, Z.S., Wang, T.J., Shenoy, V.B., et al., Inverse pseudo hall-petch relation in polycrystalline graphene. Scientific Reports, 2014, 4: 5991.

    Article  Google Scholar 

  16. Riedl, C., Coletti, C. and Starke, U., Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. Journal of Physics D—Applied Physics, 2010, 43(37): 374009.

    Article  Google Scholar 

  17. Guo, B.D., Liu, Q.A., Chen, E.D., Zhu, H.W., Fang, L.A. and Gong, J.R., Controllable N-doping of graphene. Nano Letters, 2010, 10(12): 4975–4980.

    Article  Google Scholar 

  18. Chi, M. and Zhao, Y.P., Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Computational Materials Science, 2009, 46(4): 1085–1090.

    Article  Google Scholar 

  19. Wang, X.R., Li, X.L., Zhang, L., Yoon, Y., Weber, P.K., Wang, H.L., et al., N-Doping of graphene through electrothermal reactions with ammonia. Science, 2009, 324(5928): 768–771.

    Article  Google Scholar 

  20. Lv, R.T. and Terrones, M., Towards new graphene materials: doped graphene sheets and nanoribbons. Materials Letters, 2012, 78: 209–218.

    Article  Google Scholar 

  21. Lv, R., Li, Q., Botello-Mendez, A.R., Hayashi, T., Wang, B., Berkdemir, A., et al., Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012, 2: 586.

    Article  Google Scholar 

  22. Wang, Y., Shao, Y.Y., Matson, D.W., Li, J.H. and Lin, Y.H., Nitrogen-doped graphene and its application in electrochemical biosensing. Acs Nano, 2010, 4(4): 1790–1798.

    Article  Google Scholar 

  23. Mortazavi, B., Ahzi, S., Toniazzo, V. and Remond, Y., Nitrogen doping and vacancy effects on the mechanical properties of graphene: a molecular dynamics study. Physics Letters A, 2012, 376(12–13): 1146–1153.

    Article  Google Scholar 

  24. Mortazavi, B. and Ahzi, S., Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Communications, 2012, 152(15): 1503–1507.

    Article  Google Scholar 

  25. Zheng, Q.B., Li, Z.G. and Yang, J.H., Effects of N doping and NH2 grafting on the mechanical and wrinkling properties of graphene sheets. Rsc Advances, 2013, 3(3): 923–929.

    Article  Google Scholar 

  26. Plimpton, S., Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 1995, 117(1): 1–19.

    Article  Google Scholar 

  27. Tersoff, J., Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(8): 5566–5568.

    Article  Google Scholar 

  28. Tersoff, J., Erratum: modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B: Condensed Matter and Materials Physics, 1990, 41(5): 3248.

    Google Scholar 

  29. Bu, H., Chen, Y.F., Zou, M., Yi, H., Bi, K.D. and Ni, Z.H., Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters A, 2009, 373(37): 3359–3362.

    Article  Google Scholar 

  30. Mortazavi, B., Remond, Y., Ahzi, S. and Toniazzo, V., Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Computational Materials Science, 2012, 53(1): 298–302.

    Article  Google Scholar 

  31. Gupta, S., Dharamvir, K. and Jindal, V.K., Elastic moduli of single-walled carbon nanotubes and their ropes. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(16): 165428.

    Google Scholar 

  32. Lindsay, L. and Broido, D.A., Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Physical Review B: Condensed Matter and Materials Physics, 2010, 81: 205441.

    Article  Google Scholar 

  33. Kinaci, A., Haskins, J.B., Sevik, C. and Cagin, T., Thermal conductivity of BN-C nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(11): 115410.

    Article  Google Scholar 

  34. Matsunaga, K., Fisher, C. and Matsubara, H., Tersoff potential parameters for simulating cubic boron carbonitrides. Japanese Journal of Applied Physics Part 2—Letters, 2000, 39(1ab): L48–L51.

    Article  Google Scholar 

  35. Moon, W.H., Son, M.S. and Hwang, H.J., Molecular-dynamics simulation of structural properties of cubic boron nitride. Physica B—Condensed Matter, 2003, 336(3–4): 329–334.

    Article  Google Scholar 

  36. Stuart, S.J., Tutein, A.B. and Harrison, J.A., A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics, 2000, 112(14): 6472–6486.

    Article  Google Scholar 

  37. Han, T.W., He, P.F., Wang, J., Zheng, B.L. and Wu, A.H., Strain rate dependences of tensile failure process for single graphene sheet: a molecular dynamics study. Science in China Series G: Physics, Mechanics, Astronomy, 2009, 39(9): 1312–1319.

    Google Scholar 

  38. Han, T.W., Luo, Y. and Wang, C.Y., Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. Journal of Physics D—Applied Physics, 2014, 47(2): 025303.

    Google Scholar 

  39. Chen, M.Q., Quek, S.S., Sha, Z.D., Chiu, C.H., Pei, Q.X. and Zhang, Y.W., Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene—a molecular dynamics study. Carbon, 2015, 85: 135–146.

    Article  Google Scholar 

  40. Dumitrica, T., Hua, M. and Yakobson, B.I., Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16): 6105–6109.

    Article  Google Scholar 

  41. Dumitrica, T. and Yakobson, B.I., Strain-rate and temperature dependent plastic yield in carbon nanotubes from ab initio calculations. Applied Physics Letters, 2004, 84(15): 2775–2777.

    Article  Google Scholar 

  42. Zhao, H. and Aluru, N.R., Temperature and strain-rate dependent fracture strength of graphene. Journal of Applied Physics, 2010, 108(6): 064321.

    Google Scholar 

  43. Swope, W.C., Anderson, H.C., Berens, P.H. and Wilson, K.R., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. The Journal of Chemical Physics, 1982, 76(1): 637–649.

    Article  Google Scholar 

  44. Nose, S., A molecular dynamics method for simulation in the canonical ensemble. Molecular Physics, 1984, 52(2): 255–268.

    Article  MathSciNet  Google Scholar 

  45. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695–1697.

    Article  Google Scholar 

  46. Lee, C., Wei, X.D., Kysar, J.W. and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388.

    Article  Google Scholar 

  47. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. and Eklund, P.C., Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters, 2006, 6(12): 2667–2673.

    Article  Google Scholar 

  48. Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W., et al., Mechanical properties of carbon nanotubes. Applied Physics A—Materials Science & Processing, 1999, 69(3): 255–260.

    Article  Google Scholar 

  49. Wang, C.Y. and Zhang, L.C., A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology, 2008, 19(7): 075705.

    Google Scholar 

  50. Liu, F., Ming, P.M. and Li, J., Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(6): 064120.

    Google Scholar 

  51. Zang, J.L., Yuan, Q.Z., Wang, F.C. and Zhao, Y.P., A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Computational Materials Science, 2009, 46(3): 621–625.

    Article  Google Scholar 

  52. Pei, Q.X., Zhang, Y.W. and Shenoy, V.B., A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon, 2010, 48(3): 898–904.

    Article  Google Scholar 

  53. Ni, Z.H., Bu, H., Zou, M., Yi, H., Bi, K.D. and Chen, Y.F., Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B—Condensed Matter, 2010, 405(5): 1301–1306.

    Article  Google Scholar 

  54. Han, T.W., He, P.F., Wang, J. and Zheng, B.L., Molecular dynamics simulation of single graphene sheet under tension. New Carbon Materials, 2010, 25(4): 261–266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyuan Wang.

Additional information

Project supported by the Natural Science Foundation of Jiangsu Province (Nos. BK2011490 and BK20151336), Program of Talents in Innovation and Entrepreneurship of Jiangsu Province and the National Natural Science Foundation of China (No. 21204031).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Luo, Y. & Wang, C. Effects of SI, N and B Doping on the Mechanical Properties of Graphene Sheets. Acta Mech. Solida Sin. 28, 618–625 (2015). https://doi.org/10.1016/S0894-9166(16)30003-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(16)30003-9

Key Words

Navigation