Skip to main content
Log in

Symplectic Analysis for Wave Propagation of Hierarchical Honeycomb Structures

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Wave propagation in two-dimensional hierarchical honeycomb structures with two-order hierarchy is investigated by using the symplectic algorithm. By applying the variational principle to the dual variables, the wave propagation problem is transformed into a two-dimensional symplectic eigenvalue problem. The band gaps and spatial filtering phenomena are examined to find the stop bands and directional stop bands. Special attention is directed to the effects of the relative density and the length ratio on the band gaps and phase constant surfaces. This work provides new opportunities for designing hierarchical honeycomb structures in sound insulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleck, N.A., Deshpande, V.S. and Ashby, M.F., Micro-architectured materials: past, present and future. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2010, 466(2121): 2495–2516.

    Article  Google Scholar 

  2. Hutchinson, R. and Fleck, N., The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids, 2006, 54(4): 756–782.

    Article  MathSciNet  Google Scholar 

  3. Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties (2nd ed). Cambridge, U.K.: Cambridge University Press, 1997.

    Book  Google Scholar 

  4. Valdevit, L., Hutchinson, J.W. and Evans, A.G., Structurally optimized sandwich panels with prismatic cores. International Journal of Solids and Structures, 2004, 41(18–19): 5105–5124.

    Article  Google Scholar 

  5. Zhou, J., et al., Optimal design of metallic sandwich tubes with prismatic cores to internal moving shock load. Structural and Multidisciplinary Optimization, 2010, 41(1): 133–150.

    Article  Google Scholar 

  6. Evans, A.G., et al., The topological design of multifunctional cellular metals. Progress in Materials Science, 2001, 46(3): 309–327.

    Article  Google Scholar 

  7. Zhang, X. and Cheng, G., A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. International Journal of Impact Engineering, 2007, 34(11): 1739–1752.

    Article  Google Scholar 

  8. Liu, T., Fleck, N.A. and Wadley, H.N.G., et al., The impact of sand slugs against beams and plates: Coupled discrete particle/finite element simulations. Journal of the Mechanics and Physics of Solids, 2013, 61(8): 1798–1821.

    Article  Google Scholar 

  9. Gu, S., Lu, T. and Evans, A., On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. International Journal of Heat and Mass Transfer, 2001, 44(11): 2163–2175.

    Article  Google Scholar 

  10. Lu, T., Valdevit, L. and Evans, A., Active cooling by metallic sandwich structures with periodic cores. Progress in Materials Science, 2005, 50(7): 789–815.

    Article  Google Scholar 

  11. Kumar, R. and Mcdowell, D., Multifunctional design of two-dimensional cellular materials with tailored mesostructure. International Journal of Solids and Structures, 2009, 46(14–15): 2871–2885.

    Article  Google Scholar 

  12. Ajdari, A., et al., Hierarchical honeycombs with tailorable properties. International Journal of Solids and Structures, 2012, 49(11–12): 1413–1419.

    Article  Google Scholar 

  13. Haghpanah, B., Ramin, O. and Jim, P., et al., Sell-similar hierarchical honeycombs. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences. 2013, 469(2156): 1–19.

    Article  Google Scholar 

  14. Phani, A.S., Woodhouse, J. and Fleck, N., Wave propagation in two-dimensional periodic lattices. The Journal of the Acoustical Society of America, 2006, 119: 1995.

    Article  Google Scholar 

  15. Montero De Espinosa, F.R., Jiménez, E. and Torres, M., Ultrasonic band gap in a periodic two-dimensional composite. Physical Review Letters, 1998, 80(6): 1208–1211.

    Article  Google Scholar 

  16. Spadoni, A., Ruzzene, M. and Gonella, S., et al., Phononic properties of hexagonal chiral lattices. Wave Motion, 2009, 46(7): 435–450.

    Article  MathSciNet  Google Scholar 

  17. Gonella, S. and Ruzzene, M., Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. Journal of Sound and Vibration, 2008, 312(1): 125–139.

    Article  Google Scholar 

  18. Gonella, S., To, A.C. and Liu, W.K., Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. Journal of the Mechanics and Physics of Solids, 2009, 57(3): 621–633.

    Article  Google Scholar 

  19. Kushwaha, M., Halevi, P. and Dobrzynski, L., et al., Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71(13): 2022.

    Article  Google Scholar 

  20. Kushwaha, M., Kushwaha, M.S. and Halevi, P., et al., Theory of acoustic band structure of periodic elastic composites. Physical Review B, 1994, 49(4): 2313.

    Article  Google Scholar 

  21. Zhong, W., Williams, F. and Leung, A., Symplectic analysis for periodical electro-magnetic waveguides. Journal of Sound and Vibration, 2003, 267(2): 227–244.

    Article  Google Scholar 

  22. Zhang, H.W., et al., Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method. International Journal of Solids and Structures, 2007, 44(20): 6428–6449.

    Article  Google Scholar 

  23. Hou, X.H., Deng, Z.C. and Zhou, J.X., Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and MechanicsEnglish Edition, 2010, 31(11): 1371–1382.

    Article  MathSciNet  Google Scholar 

  24. Zhou, M., Zhong, W. and Williams, F., Wave propagation in substructural chain-type structures excited by harmonic forces. International Journal of Mechanical Sciences, 1993, 35(11): 953–964.

    Article  Google Scholar 

  25. Wittrick, W.H. and Williams, F.W., A general algorithm for computing natural frequencies of elastic structures. The Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(3): 263–284.

    Article  MathSciNet  Google Scholar 

  26. Williams, F., Wanxie, Z. and Bennett, P., Computation of the eigenvalues of wave propagation in periodic substructural systems. Journal of Vibration Acoustics, 1993, 115(4): 422–426.

    Article  Google Scholar 

  27. Hou, X.H., Deng, Z.C. and Zhou, J.X., et al., Symplectic analysis for elastic wave propagation in two-dimensional cellular structures. Acta Mechanica Sinica, 2010, 26(5): 711–720.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zichen Deng.

Additional information

Project supported by the National Basic Research Program of China (No. 2011CB610300), the National Natural Science Foundation of China (Nos. 11172239 and 11372252), the Doctoral Program Foundation of Education Ministry of China (No. 20126102110023), the Fundamental Research Funds for the Central Universities (Nos. 310201401JCQ01001 and 3102015ZY036) and China Postdoctoral Science Foundation (No. 2013M540724) and Shaanxi postdoctoral research projects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Deng, Z., Xu, X. et al. Symplectic Analysis for Wave Propagation of Hierarchical Honeycomb Structures. Acta Mech. Solida Sin. 28, 294–304 (2015). https://doi.org/10.1016/S0894-9166(15)30016-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(15)30016-1

Key Words

Navigation