Skip to main content
Log in

Surface Stress Properties of DNA-Microcantilever Systems

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

For the first time, the connection between surface stress and nanoscopic interactions of DNA adsorbed on microcantilever is established by combining Strey’s mesoscopic liquid crystal theory and Stoney’s formula. It is shown that surface stress depends not only on biomolecular interactions of DNA biofilm but also on mechanical properties of cantilever. Considering the correlativity between grafting density and chain length of DNA chain, we discuss the differences between DNA-microcantilever system and DNA solution system. The major theoretical achievement of this model is to identify the main contributions to surface stress under different detection conditions. This provides guidelines for designing new biosensors with high sensitivity and improved reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlett, J.L., Myers, E.B. and Roukes, M.L., Comparative advantages of mechanical biosensors. Nature Nanotechnology, 2011, 6(4): 203–215.

    Article  Google Scholar 

  2. Zhang, N.H., Tan, Z.Q., Li, J.J., Meng, W.L. and Xu, L.W., Interactions of single-stranded DNA on micro-cantilevers. Current Opinion in Colloid and Interface Science, 2011, 16(6): 592–596.

    Article  Google Scholar 

  3. Zhang, N.H. and Shan, J.Y., An energy model for nanomechanical deflection of cantilever-DNA chip. Journal of the Mechanics and Physics of Solids, 2008, 56(6): 2328–2337.

    Article  Google Scholar 

  4. Wang, J.X., Huang, Z.P., Duan, H.L., Yu, S.W., Feng, X.Q., Wang, G.F., Zhang, W.X. and Wang, T.J., Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 2011, 24(1): 52–82.

    Article  Google Scholar 

  5. Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H.J., Gerber, C. and Gimzewski, J.K., Translating biomolecular recognition into nanomechanics. Science, 2000, 288(5464): 316–318.

    Article  Google Scholar 

  6. Wu, G.H., Ji, H.F., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M.F., Chakraborty, A.K. and Majumdar, A., Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4): 1560–1564.

    Article  Google Scholar 

  7. McKendry, R., Zhang, J.Y., Arntz, Y., Strunz, T., Hegner, M., Lang, H.P., Baller, M.K., Certa, U., Meyer, E., Guntherodt, H.J. and Gerber, C., Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9783–9788.

    Article  Google Scholar 

  8. Alvarez, M., Carrascosa, L.G., Moreno, M., Calle, A., Zaballos, A., Lechuga, L.M., Martinez-A, C. and Tamayo, J., Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers. Langmuir, 2004, 20(22): 9663–9668.

    Article  Google Scholar 

  9. Mertens, J., Rogero, C., Calleja, M., Ramos, D., Martin-Gago, J.A., Briones, C. and Tamayo, J., Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nature Nanotechnology, 2008, 3(5): 301–307.

    Article  Google Scholar 

  10. Shuttleworth, R., The surface tension of solids. Proceedings of the Physical Society A, 1950, 63: 444–457.

    Article  Google Scholar 

  11. Stoney, G.G., The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London Series A, 1909, 82(553): 172–175.

    Article  Google Scholar 

  12. Zhang, J.Q., Yu, S.W., Feng, X.Q. and Wang, G.F., Theoretical analysis of adsorption-induced microcantilever bending. Journal of Applied Physics, 2008, 103(9): 093506-1-6.

    Google Scholar 

  13. Yi, X. and Duan, H.L., Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1254–1266.

    Article  Google Scholar 

  14. Liu, F., Zhang, Y. and Ou-Yang, Z.C., Flexoelectric origin of nanomechanic deflection in DNA-microcantilever system. Biosensors and Bioelectronics, 2003, 18(5–6): 655–660.

    Article  Google Scholar 

  15. Zhang, N.H., Shan, J.Y. and Xing, J.J., Piezoelectric properties of single-strand DNA molecular brush bio-layers. Acta Mechanica Solida Sinica, 2007, 20(3): 206–210.

    Article  Google Scholar 

  16. Begley, M.R., Utz, M. and Komaragiri, U., Chemo-mechanical interactions between adsorbed molecules and thin elastic films. Journal of the Mechanics and Physics of Solids, 2005, 53(9): 2119–2140.

    Article  MathSciNet  Google Scholar 

  17. Utz, M. and Begley, M.R., Scaling theory of adsorption-induced stresses in polymer brushes grafted onto compliant structures. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 801–814.

    Article  Google Scholar 

  18. Zhang, N.H. and Shan, J.Y., Nanomechanical behaviors of microcantilever-based single-stranded DNA chips induced by counterion osmotic effects. Biomechanics and Modeling in Mechanobiology, 2011, 10(2): 229–234.

    Article  Google Scholar 

  19. Strey, H.H., Parsegian, V.A. and Podgornik, R., Equation of state for DNA liquid crystals: Fluctuation enhanced electrostatic double layer repulsion. Physical Review Letters, 1997, 78(5): 895–898.

    Article  Google Scholar 

  20. Strey, H.H., Parsegian, V.A. and Podgornik, R., Equation of state for polymer liquid crystals: theory and experiment. Physical Review E, 1999, 59(1): 999–1008.

    Article  Google Scholar 

  21. Hagan, M.F., Majumdar, A. and Chakraborty, A.K., Nanomechanical forces generated by surface grafted DNA. Journal of Physical Chemistry B, 2002, 106(39): 10163–10173.

    Article  Google Scholar 

  22. Zhang, N.H. and Chen, J.Z., Mechanical properties of double-stranded DNA biolayers immobilized on microcantilever under axial compression. Journal of Biomechanics, 2009, 42(10): 1483–1487.

    Article  Google Scholar 

  23. Zhang, N.H., Chen, J.Z., Li, J.J. and Tan, Z.Q., Mechanical properties of DNA biofilms adsorbed on microcantilevers in label-free biodetections. Biomaterials, 2010, 31(25): 6659–6666.

    Article  Google Scholar 

  24. Tinland, B., Pluen, A., Sturm, J. and Weill, G., Persistence length of single-stranded DNA. Macromolecules, 1997, 30(19): 5763–5765.

    Article  Google Scholar 

  25. Zhang, N.H. and Xing, J.J., An alternative model for elastic bending deformation of multilayered beams. Journal of Applied Physics, 2006, 100(10): 103519-1-5.

    Google Scholar 

  26. Zhang, N.H., Thermoelastic stresses in multilayered beams. Thin Solid Films, 2007, 515(23): 8402–8406.

    Article  Google Scholar 

  27. Zhang, N.H. and Chen, J.Z., An alternative two-variable model for bending problems of multilayered beams. Journal of Applied Mechanics, 2008, 75(4): 044503-1-3.

    Article  Google Scholar 

  28. Zhang, N.H. and Chen, J.Z., Elastic bending analysis of bilayered beams by an alternative two-variable method. European Journal of Mechanics A-Solids, 2009, 28(2): 284–288.

    Article  Google Scholar 

  29. Zhang, N.H. and Chen, J.Z., An alternative model for elastic thermal stresses in two materials joined by a graded layer. Composites Part B-Engineering, 2010, 41(5): 375–379.

    Article  Google Scholar 

  30. Zhang, N.H., Meng, W.L. and Aifantis, E.C., Elastic bending analysis of bilayered beams containing a gradient layer by an alternative two-variable method. Composite Structures, 2011, 93(12): 3130–3139.

    Article  Google Scholar 

  31. Tan, Z.Q., Li, J.J. and Zhang, N.H., An analytical model for nanomechanical behavior of microcantilever-DNA chip. In: Proceedings of the 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Weihai, China, 2009, 74933X-1-6.

  32. Stachowiak, J.C., Yue, M., Castelino, K., Chakraborty, A. and Majumdar, A., Chemomechanics of surface stresses induced by DNA hybridization. Langmuir, 2006, 22(1): 263–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenghui Zhang.

Additional information

Project supported by the Natural Science Foundation of China (Nos. 10872121 and 11272193), the Research Innovation Program of Shanghai Education Commission (No. 09YZ07), the Systems Biology Research Foundation of Shanghai University and the Shanghai Leading Academic Discipline Project (No. S30106).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Z., Zhang, N. & Li, J. Surface Stress Properties of DNA-Microcantilever Systems. Acta Mech. Solida Sin. 27, 122–128 (2014). https://doi.org/10.1016/S0894-9166(14)60022-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(14)60022-7

Key Words

Navigation