Skip to main content
Log in

Theoretical and Experimental Studies of Stress Distribution in Wedge-Shaped Granular Heaps

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The present work explains the statics of self-weight transmission restricted to a long prismatic heap inclined at an angle of repose and symmetrically formed on a rigid base. The closure of polarized principal axes with the mobilized state of stress along the slope surface is employed by imposing the orientation of principal stresses on the equilibrium equations. Comparisons were made with calculations based on the finite element method using an elastic model. Moreover, experiments on sand heaps deposited on a rectangular rigid base were conducted to validate the theoretical study. The measured pressure profile generally agreed well with theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Watson, A., The perplexing puzzle posed by a pile of apples. New Scientist, 1991, 132: 19.

    Google Scholar 

  2. Watson, A., Searching for the sand-pile pressure dip. Science, 1996, 273: 579–580.

    Article  Google Scholar 

  3. Wittmer, J.P., Claudin, P., Cates, M.E. and Bouchaud, J.P., An explanation for the central stress minimum in sand piles. Nature, 1996, 382: 336–338.

    Article  Google Scholar 

  4. Hummel, F.H. and Finnan, E.J., The distribution of pressure on surfaces supporting a mass of granular material. Minutes of the Proceedings of the Institution of Civil Engineers, 1921, 212: 369–392.

    Article  Google Scholar 

  5. Trollope, D.H., The systematic arching theory applied to the stability analysis of embankments. In: Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, 1957, 2: 382–388.

  6. Bouchaud, J.P., Cates, M.E. and Claudin, P., Stress-distribution in granular media and nonlinear-wave equation. J. Phys. I, 1995, 5: 639–656.

    Google Scholar 

  7. Wittmer, J.P., Cates, M.E. and Claudin, P., Stress propagation and arching in static sandpiles. J. Phys. I, 1997, 7: 39–80.

    Google Scholar 

  8. Cantelaube, F. and Goddard, J.D., Elastoplastic arching in 2D granular heaps, powders and grains 97. In: Proceedings of the Third International Conference on Powders & Grains, 1997: 231–234.

  9. Didwania, A.K., Cantelaube, F. and Goddard, J.D., Static multiplicity of stress states in granular heaps. Proceedings of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences, 2000, 456: 2569–2588.

    Article  Google Scholar 

  10. Trollope, D.H., The stability of Wedges of Granular Materials. Ph.D. Thesis, Ph.D., 1956.

  11. Jotaki, T., On the bottom pressure distribution of the bulk materials piled with the angle of repose. J. Soc. Powder Technol., Japan, 1979, 16: 184–191.

    Article  Google Scholar 

  12. Šmíd, J. and Novosad, J., Pressure distribution under heaped bulk solids, Particle Technology. In: Proceedings of the 1981 Powtech Conference, 1981: 1–12.

  13. Vanel, L., Howell, D., Clark, D., Behringer, R.P. and Clement, E., Memories in sand: Experimental tests of construction history on stress distributions under sandpiles. Physical Review E, 1999, 60: R5040–R5043.

    Article  Google Scholar 

  14. Wiesner, T.J., Failure stresses beneath granular embankments. Development in Theoretical Geomechanics, 2000: 33–41.

  15. Geng, J., Longhi, E., Behringer, R.P. and Howell, D.W., Memory in two-dimensional heap experiments. Physical Review E, 2001, 64: 060301.

    Article  Google Scholar 

  16. Savage, S.B., Problems in the statics and dynamics of granular materials. In: Proceedings of the Third International Conference on Powders & Grains (Powders and Grains 97), 1997: 185–194.

  17. Pipatpongsa, T., Heng, S., Iizuka, A. and Ohta, H., Statics of loose triangular embankment under Nadai’s sand hill analogy. Journal of the Mechanics and Physics of Solids, 2010, 58(10): 1506–1523.

    Article  MathSciNet  Google Scholar 

  18. Nadai, A., Theory of Flow and Fracture of Solids. Vol. II, 1963: 697.

  19. Marais, G.v.R., Stresses in wedges of cohesionless materials formed by free discharge at the apex. Transactions of the ASME. Ser. B, Journal of Engineering for Industry, 1969, 91: 345–352.

    Article  Google Scholar 

  20. Sokolovskii, V.V., Statics of Granular Materials. Vol.11, 1965: 219–262.

  21. Cates, M.E., Wittmer, J.P., Bouchaud, J.P. and Claudin, P., Development of stresses in cohesionless poured sand. Philos. Trans. R. Soc. Lond. Ser. A—Math. Phys. Eng. Sci., 1998, 356: 2535–2560.

    Article  Google Scholar 

  22. Michalowski, R.L. and Park, N., Admissible stress fields and arching in piles of sand. Geotechnique, 2004, 54: 529–538.

    Article  Google Scholar 

  23. Cornforth, D.H., Prediction of drained strength of sands from relative density measurements. In: Selig E, Ladd R, editors. ASTM Special Technical Publication 523: Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils. American Society for Testing and Materials, 1973: 281–303.

  24. Pipatpongsa, T., Iizuka, A. and Ohta, H., Analyses of pressure distribution using arching criteria in 2D sand heaps. Theoretical and Applied Mechanics, 2010, 58: 41–48.

    Google Scholar 

  25. Tenenbaum, M. and Pollard, H., Ordinary Differential Equations. Dover Publications, New York, 1985.

    MATH  Google Scholar 

  26. Silverman, K., Approximate stress functions for triangular wedges. ASME Journal of Applied Mechanics, 1958, 22: 123.

    MATH  Google Scholar 

  27. Saint-Venant, B.D., Mémoire sur la torsion des prismes, avec des considérations sur leur flexion, ainsi que sur l’équilibre intérieur des solides élastiques en général, et des formules pratiques pour le calcul de leur résistance à divers efforts s’exerçant simultanément, Mémoires présentés par divers savans à l’Académie royale des sciences de l’Institut de France, 1855, T14: 233–560.

  28. Cox, G.M. and Hill, J.M., Some exact velocity profiles for granular flow in converging hoppers. Zeitschrift Fur Angewandte Mathematik Und Physik, 2005, 56: 92–106.

    Article  MathSciNet  Google Scholar 

  29. Iizuka, A. and Ohta, H., A determination procedure of input parameters in elasto-viscoplastic finite element analysis. Soils and Foundations, 1987, 27: 71–87.

    Article  Google Scholar 

  30. Savage, S.B., Modeling and granular material boundary values problems. Physics of Dry Granular Media, 1989, 350: 25–95.

    MathSciNet  Google Scholar 

  31. Michalowski, R.L., Coefficient of earth pressure at rest. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131: 1429–1433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirapong Pipatpongsa.

Additional information

This work was supported by KAKENHI Grant Numbers 23760441 and 24360193. The authors would like to express their gratitude to Japan Society for the Promotion of Science (JSPS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pipatpongsa, T., Matsushita, T., Tanaka, M. et al. Theoretical and Experimental Studies of Stress Distribution in Wedge-Shaped Granular Heaps. Acta Mech. Solida Sin. 27, 28–40 (2014). https://doi.org/10.1016/S0894-9166(14)60014-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(14)60014-8

Key Words

Navigation