Skip to main content
Log in

Application and Theoretical Analysis of C/SiC Composites Based on Continuum Damage Mechanics

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Based on the thermodynamic theory, an orthotropic damage constitutive model was developed to describe the nonlinear mechanical behavior of C/SiC composites. The different nonlinear kinematic and isotropic hardening functions were adopted to describe accurately the damage evolution processes. The damage variables were defined with the damaged modulus and the initial undamaged modulus on energy equivalence principle. The initial orthotropy and damage coupling were presented in the damage yield function. Tensile and in-plane shear loading and unloading tests were performed, and a good agreement between the model and the experimental results was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Besmann, T.M., Sheldon, B.W., Lowden, R.A. and Stinton, D.R., Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science, 1991, 253: 1104–1109.

    Article  Google Scholar 

  2. Ishikawa, T., Kajii, S., Matsanaga, K., Hogani, T., Kohtoku, Y. and Nagasawa, T., A tough, thermally conductive silicon carbide composite with high strength up to 1600 °C in air. Science, 1998, 282: 1295–1297.

    Article  Google Scholar 

  3. Evans, A.G. and Marshall, D.B., Overview no.85 the mechanical behavior of ceramic matrix composites. Acta Metallurgica, 1989, 37: 2567–2583.

    Article  Google Scholar 

  4. Warren, R., Ceramic Matrix Composites. Chapman & Hall: London, 1992.

    Google Scholar 

  5. Kachanov, L.M., Time of the rupture process under creep conditions. Izv. Akad. Nauk., S.R.S., Odt. Tekh. Nauk 8, 1958: 26–31.

    Google Scholar 

  6. Resende, L., A damage mechanics constitutive theory for the inelastic behavior of concrete. Computer Methods in Applied Mechanics and Engineering, 1987, 60: 57–93.

    Article  Google Scholar 

  7. Krajcinovic, D., Damage mechanics. Mechanics of Materials, 1989, 8: 117–197.

    Article  Google Scholar 

  8. Faria, R, Oliver, J. and Cervera, M., A strain-based plastic viscous-damage model for massive concrete structures. International Journal of Solids Structures, 1998, 35: 1533–1558.

    Article  Google Scholar 

  9. Ladevèze, P., Gasser, A. and Allix, O., Damage mechanics modeling for ceramic composites. Journal of Engineering Materials and Technology, 1994, 116: 331–336.

    Article  Google Scholar 

  10. Chaboche, J.L., Lesne, P.M. and Maire, J.F., Macroscopic modeling and damage processes in CMCs. Ceramic Transactions, 1995, 57: 65–75.

    Google Scholar 

  11. Burr, A., Hild, F. and Leckie, F.A., Continuum description of damage in ceramic-matrix composites. European Journal of Mechanics A-Solids, 1997, 16: 53–78.

    MATH  Google Scholar 

  12. Raghavan, P. and Ghosh, S., A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding. Mechanics of Materials, 2005, 37: 955–979.

    Google Scholar 

  13. Dinkier, D, Fink, A. and Kröplin, B., Constitutive laws for fiber reinforced ceramics. 1993, AIAA–93–5038.

  14. Maire, J.F. and Lesne, P.M., A damage model for ceramic matrix composites. Aerospace Science and Technology, 1997, 4: 259–266.

    Article  Google Scholar 

  15. Camus, G., Modeling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: application to a 2-D SiC/SiC. International Journal of Solids and Structures, 2000, 37: 919–942.

    Article  Google Scholar 

  16. Chaboche, J.L. and Maire, J.F., A new micromechanics based CDM model and its application to CMC’s. Aerospace Science and Technology, 2002, 6: 131–145.

    Article  Google Scholar 

  17. Marcin, L., Maire, J.F. and Carrère, N., Development of a macroscopic damage model for woven ceramic matrix composites. International Journal of Damage Mechanics, 2011, 20: 939–958.

    Article  Google Scholar 

  18. Nemat-Nasser, S., On finite plastic flow of crystalline solids and geomaterials. International Journal of Applied Mechanics, 1983, 50: 1114–1126.

    Article  Google Scholar 

  19. Lubliner, J., Plasticity Theory. Macmillan Publishing Company: New York, 1990.

    MATH  Google Scholar 

  20. Baste, S., Inelastic behavior of ceramic-matrix composites. Composites Science and Technology, 2001, 61: 2285–2297.

    Article  Google Scholar 

  21. Voyiadjis, G.Z. and Park, T., Kinematics description of damage for finite strain plasticity. International Journal of Engineering Science, 1999, 37: 803–830.

    Article  MathSciNet  Google Scholar 

  22. Kachanov, L.M., Introduction to Continuum Damage Mechanics. Martinus Nijhoff Publishers: The Netherlands, 1986.

    Book  Google Scholar 

  23. Lemaitre, J. and Chaboche, J.L., Mechanics of Solid Materials. Cambridge University Press: London, 1990.

    Book  Google Scholar 

  24. Rabotnov, Y.N., Creep Rupture. Proceedings of the 12th International Congress on Applied Mechanics. Stanford-Springer: In, 1968, 342–349.

    MATH  Google Scholar 

  25. Krajcinovic, D. and Fonseka, G.U., The continuous damage theory of brittle materials: Parts I and II. Journal of Applied Mechanics. 1981, 48: 809–824.

    Article  Google Scholar 

  26. Cordebois, J.P. and Sidoroff, F., Damage Induced Elastic Anisotropy. Colloque Euromech 115: VillarddeLans, 1979.

    MATH  Google Scholar 

  27. Murakami, S., Notion of continuum damage mechanics and its application to anisotropic creep damage theory. Journal of Engineering Materials and Technology, 1983, 105: 99–105.

    Article  Google Scholar 

  28. Chaboche, J.L., Le concept de contrainte effective appliquéà l’élasticité et à la viscoplasticité en présence d’un endommagement anisotrope. Col. Euromech 115, Grenoble, CNRS, 1979.

    MATH  Google Scholar 

  29. Ju, J.W., On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. International Journal of Solids and Structures, 1989, 25: 803–833.

    Article  Google Scholar 

  30. Sidoroff, F., Description of anisotropic damage application to elasticity. IUTAM Colloquium on Physical Nonlinearities in Structural Analysis, Springer-Verlag, Berlin: In, 1981, 237–244.

    Google Scholar 

  31. Simo, J.C. and Ju, J.W., Strain and stress-based continuum damage models, Part I: Formulation. International Journal of Solids and Structures, 1987, 23: 821–840.

    Article  Google Scholar 

  32. Jain, J.R. and Ghosh, S., Damage evolution in composites with a homogenization-based continuum damage mechanics model. International Journal of Damage Mechanics, 2009, 18: 533–568.

    Article  Google Scholar 

  33. Sidoroff, F., Description of Anisotropic Damage Application to Elasticity, IUTAM Colloqium on Physical Nonlinearities in Structural Analysis, Springer-Verlag, Berlin: In, 1981, 237–244.

    Google Scholar 

  34. Murakami, S., Mechanical modeling of material damage. Journal of Applied Mechanics-Transactions of ASME, 1988, 55: 280–286.

    Article  Google Scholar 

  35. Voyiadjis, G.Z. and Kattan, P.I., On the symmetrization of the effective stress tensor in continuum damage mechanics. Journal of Mechanics Behavior Materials, 1996, 7: 139–165.

    Google Scholar 

  36. Betten, J., Applications of tensor functions in continuum damage mechanics. International Journal of Damage Mechanics, 1992, 1: 47–59.

    Article  Google Scholar 

  37. Lubarda, V.A. and Krajcinovic, D., Damage tensors and the crack density distribution. International Journal of Solids and Structures, 1993, 30: 2859–2877.

    Article  Google Scholar 

  38. Fan, J.P. and Deng, Z.X., Incremental anisotropic damage theory and its numerical analysis. Acta mechanica solida sinica, 2004, 25: 262–268.

    Google Scholar 

  39. Fu, Y.M. and Tian, Y.P., The elasto-plastic damage constitutive relations of orthotropic materials. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41: 67–75.

    Google Scholar 

  40. Fu, Y.M., Mao, Y.Q. and Tian, Y.P., Damage analysis and dynamic response of elasto-plastic laminated composite shallow spherical shell under low velocity impact. International Journal of Solids and Structures, 2010, 47: 126–137.

    Article  Google Scholar 

  41. Valanis, K.C., A theory of damage in brittle materials. Engineering Fracture Mechanics, 1990, 36: 403–416.

    Article  Google Scholar 

  42. Abu Al-Rub, R.K. and Voyiadjis, G.Z., On the coupling of anisotropic damage and plasticity models for ductile materials. International Journal of Solids and Structures, 2003, 40: 2611–2643.

    Article  Google Scholar 

  43. Simo, J.C. and Honein, T., Variational formulation, discrete conservation laws, and path domain independent integrals for elasto-viscoplasticity. Journal of Applied Mechanics-Trans actions of ASME, 1990, 57: 488–497.

    Article  MathSciNet  Google Scholar 

  44. Simo, J.C. and Hughes, T.J.R., Computational Inelasticity. Interdisciplinary Applied Mathematics. New York: Springer: In, 1998.

    MATH  Google Scholar 

  45. Tsai, S.W. and Wu, E.M., A general theory of strength for anisotropic materials. Journal of Composite Materials, 1971, 5: 58–80.

    Article  Google Scholar 

  46. Gotoh, M., A theory of plastic anisotropy based on a yield function of fourth order. International Journal of Mechanical Sciences, 1977, 19: 505–520.

    Article  Google Scholar 

  47. Hill, R., Theoretical Plasticity of Textured Aggregates. In: Proceedings of the Cambridge Philosophical Society, 1979, 85: 179–191.

    Article  MathSciNet  Google Scholar 

  48. Hill, R., Constitutive modeling of orthotropic plasticity in sheet metal. Journal of Mechanics and Physics of Solids, 1990, 38: 405–417.

    Article  MathSciNet  Google Scholar 

  49. Chang, Y.J., Jiao, G.Q. and Wang, B., Elastic Behavior Analysis of 3D Angle-interlock Woven Ceramic Composites. Acta Mechanic Solid Sinica, 2006, 19: 152–159.

    Article  Google Scholar 

  50. Chang, Y.J., Jiao, G.Q. and Wang, B., Mechanical properties and damage process of a three-dimensional woven ceramic composite under in-plane shear loading. Journal of Inorganic Materials, 2007, 22: 113–118.

    Google Scholar 

  51. Chang, Y.J., Jiao, G.Q. and Tao, Y.Q., Damage behavior of 2.5D-C/SiC composite under tensile loading. Journal of Inorganic Materials, 2008, 23: 509–514.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Chang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 10902025 and 11072064), the Scientific Research Foundation of GuangXi University (No. XBZ100713), and the Key Project of GuangXi Science and Technology Lab Center (No. LGZX201101).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Jiao, G., Zhang, K. et al. Application and Theoretical Analysis of C/SiC Composites Based on Continuum Damage Mechanics. Acta Mech. Solida Sin. 26, 491–499 (2013). https://doi.org/10.1016/S0894-9166(13)60044-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(13)60044-0

Keywords

Navigation