Skip to main content
Log in

Numerical Predictions and Experimental Validations of Ductile Damage Evolution in Sheet Metal Forming Processes

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Prediction of forming limit in sheet metal forming is among the most important challenges confronting researchers. In this paper, a fully coupled elastic-plastic-damage model has been developed and implemented into an explicit code. Due to the adoption of the plane stress and finite strain theories, model can predict deformation and damage of parts quickly and accurately. Also, damage initiation, propagation, and fracture in some operations are predicted and validated with experiments. It is concluded that finite strain combined with continuum damage mechanics can be used as a quick tool to predict ductile damage, fracture, and forming limits in sheet metal forming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemaitre, J., A Course on Damage Mechanics. Berlin: Springer Verlag, 1992.

    Book  Google Scholar 

  2. Lemaitre, J., Handbook of Materials Behaviour Models. New York: John Wiley, 2002.

    Google Scholar 

  3. Lemaitre, J. and Desmorat, R., Engineering Damage Mechanics. Berlin: Springer Verlag, 2005.

    Google Scholar 

  4. Lemaitre, J., How to use damage mechanics. Nuclear Engineering and Design, 1984, 80: 233–245.

    Article  Google Scholar 

  5. Abdali, A., Benkrid, K. and Bussy, P., Simulation of sheet cutting by the large time increment method. Journal of Materials Processing Technology, 1996, 60: 255–260.

    Article  Google Scholar 

  6. Hu, J.G., Ishikawa, T. and Jonas, J.J., Finite element analysis of damage evolution and the prediction of the limiting draw ratio in textured aluminium sheets. Journal of Materials Processing Technology, 2000, 103: 374–382.

    Article  Google Scholar 

  7. Hambli, R., Finite element simulation of fine blanking processes using a pressure-dependent damage model. Journal of Materials Processing Technology, 2001, 116: 252–264.

    Article  Google Scholar 

  8. Chow, C.L. and Jie, M., Forming limits of Al 6022 sheets with material damage consideration-theory and experimental validation. International Journal of Mechanical Sciences, 2004, 46: 99–122.

    Article  Google Scholar 

  9. Guo, Y.Q., Li, Y.M., Bogard, F. and Debray, K., An efficient pseudo-inverse approach for damage modeling in the sheet forming processes. Journal of Materials Processing Technology, 2004, 151: 88–97.

    Article  Google Scholar 

  10. Lademo, O.G., Hopperstad, O.S., Berstad, T. and Langseth, M., Prediction of plastic instability in extruded aluminium alloys using shell analysis and a coupled model of elasto-plasticity and damage. Journal of Materials Processing Technology, 2005, 166: 247–255.

    Article  Google Scholar 

  11. Fan, J.P., Tang, C.Y., Tsui, C.P., Chan, L.C. and Lee, T.C., 3D finite element simulation of deep drawing with damage development. International Journal of Machine Tools and Manufacture, 2006, 46: 1035–1044.

    Article  Google Scholar 

  12. Teixeira, P., Santos, A.D., Andrade Pires, F.M. and Cesar de Sa, J.M.A., Finite element prediction of ductile fracture in sheet metal forming processes. Journal of Materials Processing Technology, 2006, 177: 278–281.

    Article  Google Scholar 

  13. Khelifa, M., Oudjene, M. and Khennane, A., Fracture in sheet metal forming: Effect of ductile damage evolution. Computers and Structures, 2007, 85: 205–212.

    Article  Google Scholar 

  14. Khelifa, M. and Oudjene, M., Numerical damage prediction in deep-drawing of sheet metals. Journal of Materials Processing Technology, 2008, 200: 71–76.

    Article  Google Scholar 

  15. Simo, J.C. and Taylor, R.L., A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering, 1986, 22: 649–670.

    Article  MathSciNet  Google Scholar 

  16. Simo, J.C. and Hughes, T., Computational Inelasticity. New York: Springer Verlag, 1998.

    MATH  Google Scholar 

  17. De Souza Neto, E.A., A fast, one-equation integration algorithm for the Lemaitre ductile damage model. Communications in Numerical Methods in Engineering, 2002, 18: 541–554.

    Article  Google Scholar 

  18. Andrade Pires, F.M., De Souza Neto, E.A. and Owen, D.R.J., On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 5223–5256.

    Article  Google Scholar 

  19. Lemaitre, J., A continuous damage mechanics model for ductile fracture. Journal of Engineering Material Technology, 1985, 107: 83–89.

    Article  Google Scholar 

  20. Mkaddem, A., Gassara, F. and Hambli, R., A new procedure using the micro-hardness technique for sheet material damage characterisation. Journal of Materials Processing Technology, 2006, 178: 111–118.

    Article  Google Scholar 

  21. Mkaddem, A., Bahloul, R., Santo, P.D. and Potiron, A., Experimental characterization in sheet forming processes by using Vickers micro-hardness technique. Journal of Materials Processing Technology, 2006, 180: 1–8.

    Article  Google Scholar 

  22. Haji Aboutalebi, F., Farzin, M. and Poursina, M., Numerical simulation and experimental validation of a ductile damage model for DIN 1623 St14 steel. International Journal of Advanced Manufacturing Technology, 2011, 53: 157–165.

    Article  Google Scholar 

  23. DIN 1623 Steel flat products; Cold reduced sheet and strip- Technical delivery conditions- General purpose structural steels. Berlin: Springer Verlag, 1986.

  24. DIN 1623 Cold reduced sheet and strip- Technical delivery conditions- General structural steels, Draft standard. Berlin: Springer Verlag, 2007.

  25. Carleer, B., Van Der Kevie, G., De Winter, L. and Van Veldhuizen, B., Analysis of the effect of material properties on the hydroforming process of tubes. Journal of Materials Processing Technology, 2000, 104: 158–166.

    Article  Google Scholar 

  26. Hwang, Y.M., Lin, T.C. and Chang, W.C., Experiments on T-shape hydroforming with counter punch. Journal of Materials Processing Technology, 2007, 192–193: 243–248.

    Article  Google Scholar 

  27. Takuda, H., Mori, K., Fujimoto, H. and Hatta, N., Prediction of forming limits in bore- expanding of sheet metals using ductile fracture criterion. Journal of Materials Processing Technology, 1999, 92–93: 433–438.

    Article  Google Scholar 

  28. Li, C.L., Huang, Y.M. and Tsai, Y.W., The analysis of forming limit in re-penetration process of the hole-flanging of sheet metal. Journal of Materials Processing Technology, 2008, 201: 256–260.

    Article  Google Scholar 

  29. Uthaisangsuk, V., Prahl, U. and Bleck, W., Stretch-flangeability characterisation of multiphase steel using a microstructure based failure modelling. Computational Materials Science, 2009, 45: 617–623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Haji Aboutalebi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboutalebi, F.H., Farzin, M. & Mashayekhi, M. Numerical Predictions and Experimental Validations of Ductile Damage Evolution in Sheet Metal Forming Processes. Acta Mech. Solida Sin. 25, 638–650 (2012). https://doi.org/10.1016/S0894-9166(12)60059-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(12)60059-7

Key words

Navigation