Skip to main content
Log in

Mixed Modes Interlaminar Fracture Toughness of CFRP Laminates Toughened with CNF Interlayer

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In the present paper, the influence of carbon nanofiber on interlaminar fracture toughness of CFRP investigated using MMB(Mixed Mode Bending) tests. Vapor grown carbon fiber VGCF and VGCF-S, and multi-walled carbon nanotube MWNT-7 has been employed for the toughener of the interlayer on the CFRP laminates. In order to evaluate the fracture toughness and mixed mode ratio ofit, double cantilever beam (DCB) tests, end notched fracture (ENF) tests and mixed mode bending (MMB) tests have been carried out. Boundary element analysis was applied to the CFRP model to compute the interlaminar fracture toughness, where extrapolation method was used to determine the fracture toughness and mixed mode ratio. The interlaminar fracture toughness and mixed mode ratio can be extrapolated by stress distribution in the vicinity of the crack tip of the CFRP laminate. It was found that the interlaminar fracture toughness of the CFRP laminates was improved inserting the interlayer made by carbon nanofiber especially in the region where shear mode deformation is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glover, B.M., History of development of commercial aircraft and 7E7 dreamliner. Aviation Engineering, 2004, 592: 16–21.

    Google Scholar 

  2. Kageyama, K., Kobayashi, T., Yanagisawa, N., Kikuchi, M. and Miyamoto, H., Mode I Interlaminar Fracture Mechanics of Unidirectionally Reinforced Carbon/Nylon Laminates. Transactions of the Japan Society of Mechanical Engineers, 1987, 53(496): 2386–2393 (in Japanese).

    Article  Google Scholar 

  3. Gillespie, Jr. J.W., Carlsson, L.A. and Smiley, A.J., Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite peek. Composite Science and Technology, 1987, 28: 1–15.

    Article  Google Scholar 

  4. Mall, S., Law, G.E. and Katouzian, M., Loading rate effect on interlaminar fracture toughness of thermoplastic composite. Journal of Composite Materials, 1987, 21-June: 569–579.

    Article  Google Scholar 

  5. Shi, Y.B. and Hull, D., Fracture of delaminated unidirectional composite beams. Journal of Composite Materials, 1992, 26(15): 2172–2195.

    Article  Google Scholar 

  6. Wilkins, D.J., Eisenmann, J.R., Camin, R.A., Margolis, W.S. and Benson, R.A., Characterizing delamination growth in graphite-epoxy. In: Damage in Composite Materials, Ed. Reifsnider KL, American Society for Testing and Materials, ASTM STP 775, 1982: 168–183.

  7. Carlsson, L.A., Gillepie, J.W. and Trethewey, B.R., Mode II interlaminar fracture of graphite/epoxy and graphite/peek. Journal of Reinforced Plastics and Composites, 1986, 5-July: 170–187.

    Article  Google Scholar 

  8. Maikuma, H., Gillespie, J.W. and Wilkins, D.J., Mode II interlaminar fracture of the center notched flexural specimen under impact loading. Journal of Composite Materials, 1990, 24-February: 124–149.

    Article  Google Scholar 

  9. Valisetty, R.R. and Chamis, C.C., Sublaminate- or ply-level analysis of composite and strain energy release rates of end-noch and mixed-mode fracture specimens. In: Composite Materials: Testing and Design(Eighth Conference), ASTM STP 9u72, Ed., Whitcomb, J.D., American Society for Testing Materials, 1988: 41–56.

  10. Sela, N., Ishiai, O. and Banks-Sills, L., The effect of adhesive thickness on interlaminar fracture toughness of interleaved laminates specimens. Composite, 1989, 20(3): 257–264.

    Article  Google Scholar 

  11. Singh, S. and Partridge, I.K., Mixed mode fracture in and interleaved carbon-fiber/epoxy composite. Composite Science and Technology, 1995, 55: 319–327.

    Article  Google Scholar 

  12. Hojo, M., Matsuda, S., Tanaka, M., Ochiai, S. and Murakami, A., Mode I delamination fatigue properties of interlayer-toughned CF/epoxy laminates. Composites Science and Technology, 2006, 66: 665–675.

    Article  Google Scholar 

  13. Hojo, M., Ando, T., Tanaka, M., Adachi, T., Ochiai, S. and Endo, Y., Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. International Journal of Fatigue, 2006, 28(10): 1154–1165.

    Article  Google Scholar 

  14. Matsuda, S., Hojo, M. and Ochiai, S., Mesoscopic fracture mechanism of interleaf-toughned CFRP. JSME International Journal (Series A), 1997, 40(4): 423–429.

    Article  Google Scholar 

  15. Oberlin, A., Endo, M. and Koyama, T., Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 1976, 32: 335–349.

    Article  Google Scholar 

  16. Endo, M., Grow carbon fibers in the vapor phase. Chemtech, 1988, September: 568–576.

  17. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58.

    Article  Google Scholar 

  18. Sandler, J., Werner, P., Shafer, M.S.P., Demchuk, V. and Altstadt, V., Carbon-nanofibre-reinforced poly (ether ether ketone) composite. Composites Part A, 2002, 33: 1033–1039.

    Article  Google Scholar 

  19. Yamamoto, G., Hashida, T., Omori, M. and Kimura, H., Reinforcement of Alumina with surface modified carbon nanotube. Materials Science Forum, 2010, 631–632: 231–236.

    Google Scholar 

  20. Hu. N., Masuda. Z., Yamamoto, G., Fukunaga, H., Hashida, T. and Qiu, J., Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites. Composites Part A, 2008, 39: 893–903.

    Article  Google Scholar 

  21. Arai, M., Noro, Y., Sugimoto, K. and Endo, M., Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Journal of Composites Science and Technology, 2008, 68(2): 516–525.

    Article  Google Scholar 

  22. Yokozeki, T., Iwahori, Y., Ishibashi, M., Yanagisawa, T., Imai, K., Arai, M., Takahashi, T. and Enomoto, K., Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes. Journal of Composites Science and Technology, 2009, 69(14): 2268–2273.

    Article  Google Scholar 

  23. Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y. and Fukunaga, H., Improvement of interlaminar mehcanical properties of CFRP laminates using VGCF. Composites Part A, 2009, 40: 2004–2012.

    Article  Google Scholar 

  24. Reeder, J.R. and Crews Jr. J.H., Mixed-mode bending method for delamination testing. AIAA Journal, 1990, 28(7): 1270–1276.

    Article  Google Scholar 

  25. Reeder, J.R. and Crews Jr., J.H., Redesign of the mixed-mode bending delamination test to reduce non-linear effects. Journal of Composites Technology and Research, 1992, 14: 12–19.

    Article  Google Scholar 

  26. Chen, J.H., Sernow, R., Schulz, E. and Hinrichsen, G., A modification of the mixed-mode bending test apparatus. Composities Part A, 1999, 30: 871–877.

    Article  Google Scholar 

  27. Arai, M., Takagi, T., Kuwahara, T. and Adachi, T., Evaluation of interlaminer fracture toughness of cross-ply CFRP laminates using mixed mode bending test. Transactions of the JSME Series A, 2004, 70(698): 1356–1363 (in Japanese).

    Article  Google Scholar 

  28. Arai, M., Sumida, T. and Shimizu, M., Effect of residual stress on interlaminar fracture toughness of CFRP laminates. Journal of Thermal Stress, 2007, 30: 1099–1116.

    Article  Google Scholar 

  29. Dunders, J., Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. Journal of Applied Mechanics, 1969, 36: 650–652.

    Article  Google Scholar 

  30. Dunders, J., Effects of elastic constants on stress in a composite under plane deformation. Journal of Composite Material, 1967, 1(4): 310–322.

    Article  Google Scholar 

  31. Suo. Z., Singularities, interface and cracks in dissimilar anisotropic media. Proceedings of the Royal Society of London Series A, 1990, 427: 331–358.

    Article  MathSciNet  Google Scholar 

  32. Yuuki, R. and Jinquan, X., Stress intensity factors for the interface crack between dissimilar orthotropic materials. Transactions of the JSME Series A, 1991, 57(539): 1542–1549 (in Japanese).

    Article  Google Scholar 

  33. Cho, S.B., Lee, K.R., Choy, Y.S. and Yuuki, R., Determination of stress intensity factors and boundary element analysis for interface cracks in dissimilar anisotropic materials. Engineering Fracture Mechanics, 1992, 43(4): 603–614.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Arai.

Additional information

This research was supported by the Program for Fostering Regional Innovation in Nagano, granted by MEXT, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arai, M., Sasaki, T., Hirota, S. et al. Mixed Modes Interlaminar Fracture Toughness of CFRP Laminates Toughened with CNF Interlayer. Acta Mech. Solida Sin. 25, 321–330 (2012). https://doi.org/10.1016/S0894-9166(12)60029-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(12)60029-9

Key words

Navigation