Skip to main content
Log in

Wave Propagation in a Transversely Isotropic Thermoelastic Solid Cylinder of Arbitrary Cross-Section

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The wave propagation in an infinite, homogeneous, transversely isotropic solid cylinder of arbitrary cross-section is studied using Fourier expansion collocation method, within the frame work of linearized, three-dimensional theory of thermoelasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat conduction. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for elliptic and parabolic cross-sectional zinc cylinders. The computed non-dimensional wave numbers are presented in the form of dispersion curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagaya, K., Dispersion of elastic waves in bar with arbitrary cross-section. Journal of Acoustical society of America, 1981, 70(3): 763–770.

    Article  Google Scholar 

  2. Nagaya, K., Direct method on determination of eigen frequencies of arbitrary shaped plates. Transaction of the ASME, Journal of vibration, Stress and Reliability in Design, 1983, 105: 132–136.

    Article  Google Scholar 

  3. Mirsky, I., Wave propagation in a transversely isotropic circular cylinders. Part I: Theory; Part II: Numerical results. Journal of Acoustical Society of America, 1964, 37(6): 1016–1026.

    Article  Google Scholar 

  4. Chau, K.T., Vibration of transversely isotropic finite circular cylinders. Transaction of the ASME, Journal of Applied Mechanics, 1994, 61: 964–970.

    Article  Google Scholar 

  5. Honarvar, F. and Sinclair, A.N., Acoustic wave scattering from transversely isotropic cylinders. Journal of Acoustical Society of America, 1996, 100: 57–63.

    Article  Google Scholar 

  6. Honarvar, F., Enjilela, E., Sinclair, A.N. and Mirnezami, S.A., Wave propagation in a transversely isotropic cylinders. International Journal of Solid and Structure, 2007, 44: 5236–5246.

    Article  Google Scholar 

  7. Pan, Y., Rossignol, C. and Audoin, B., Acoustic waves generated by a laser point source in an isotropic cylinder. Journal of Acoustical society of America, 2004, 116(2): 814–820.

    Article  Google Scholar 

  8. Biot, M.A., Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 1956, 27(3): 240–253.

    Article  MathSciNet  Google Scholar 

  9. Suhubi, E.S., Longitudinal vibrations of a circular cylindrical coupled with a thermal field. Journal of Mechanical Physics Solids, 1964, 12: 69–75.

    Article  Google Scholar 

  10. Erbay, S. and Suhubi, E.S., Longitudinal wave propagation in a generalized thermoelastic cylinder. Journal of Thermal Stresses, 1986, 9: 279–295.

    Article  Google Scholar 

  11. Green, A.E. and Naghdi, P.M., Thermoelasticity without energy dissipation. Journal of Elasticity, 1993, 31: 189–208.

    Article  MathSciNet  Google Scholar 

  12. Kumar, A.B., Thermoelastic waves from suddenly punched hole in stretched elastic plate. Indian Journal of Pure and Applied Mathematics, 1989, 20(2): 181–188.

    MATH  Google Scholar 

  13. Sharma, J.N. and Sharma, P.K., Free vibration analysis of homogeneous transversely isotropic thermoelastic cylindrical panel. Journal of Thermal Stresses, 2002, 25: 169–182.

    Article  Google Scholar 

  14. Singh, H. and Sharma, J.N., Generalized thermoelastic waves in transversely isotropic media. Journal of Acoustical society of America, 1985, 77(3): 1046–1053.

    Article  Google Scholar 

  15. Kardomateas, G.A., Transient thermal stresses in cylindrically orthotropic composite tubes. Journal of Applied Mechanics, 1989, 56: 411–417.

    Article  Google Scholar 

  16. Yee, K.C. and Moon, T.J., Plane thermal stress analysis of an orthotropic cylinder subjected to an arbitrary, transient, asymmetric temperature distribution. Transaction of the ASME, Journal of Applied Mechanics, 2002, 69: 632–640.

    Article  Google Scholar 

  17. Venkatesan, M. and Ponnusamy, P., Wave propagation in a solid cylinder of arbitrary cross-section immersed in a fluid. Journal of Acoustical society of America, 2002, 112: 936–942.

    Article  Google Scholar 

  18. Venkatesan, M. and Ponnusamy, P., Wave propagation in a solid cylinder of polygonal cross-section immersed in a fluid. Indian Journal of Pure and Applied Mathematics, 2003, 34(9): 1381–1391.

    MATH  Google Scholar 

  19. Chen, W.Q., Ying, J. and Yang, Q.D., Free vibrations of transversely isotropic cylinders and cylindrical shells. Transaction of the ASME, Journal of Pressure Vessel Technology, 1998a, 120(4), 321–324.

    Article  Google Scholar 

  20. Chen, W.Q., Ding, H. and Xu, R., On exact analysis of free vibrations of embedded transversely isotropic cylindrical shells. International Journal of Pressure Vessels and piping, 1998b, 75(13): 961–996.

    Article  Google Scholar 

  21. Chen, W.Q., Lim, C.W. and Ding, H.J., Point temperature solution for a penny-shaped crack in an infinite transversely isotropic thermo-piezo-elastic medium. Engineering Analysis with Boundary Elements, 2005, 29: 524–532.

    Article  Google Scholar 

  22. Lin-xiang, W. and Melnik, R.V.N., Differential-algebraic approach to coupled problems of dynamic thermoelasticity. Applied Mathematics and Mechanics, 2006, 27(9): 1185–1196.

    Article  Google Scholar 

  23. Youssef, H.M. and El-Bary, A.A., Mathematical model for thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity. Journal of Computational Methods in Science and Technology, 2006, 12(2): 165–171.

    Article  Google Scholar 

  24. Youssef, H.M. and Abbas, I.A., Thermal shock problem of a generalized thermoelasticity of an infinitely long annular cylinder with variable thermal conductivity. Journal of Computational Methods in Science and Technology, 2007, 13(2): 95–100.

    Article  Google Scholar 

  25. Berliner, M.J. and Solecki, R., Wave propagation in fluid-loaded transversely isotropic cylinders. Part 1 analytical formulation, Part II, numerical results. Journal of Acoustical society of America, 1996, 99: 1841–1853.

    Article  Google Scholar 

  26. Antia, H.M., Numerical Methods for Scientists and Engineers. Hindustan Book Agency, New Delhi, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ponnusamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponnusamy, P., Rajagopal, M. Wave Propagation in a Transversely Isotropic Thermoelastic Solid Cylinder of Arbitrary Cross-Section. Acta Mech. Solida Sin. 24, 527–538 (2011). https://doi.org/10.1016/S0894-9166(11)60053-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60053-0

Key words

Navigation