Skip to main content
Log in

The unique properties of the solid-like confined liquid films: A large scale molecular dynamics simulation approach

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The properties of the confined liquid are dramatically different from those of the bulk state, which were reviewed in the present work. We performed large-scale molecular dynamics simulations and full-atom nonequilibrium molecular dynamics simulations to investigate the shear response of the confined simple liquid as well as the n-hexadecane ultrathin films. The shear viscosity of the confined simple liquid increases with the decrease of the film thickness. Apart from the well-known ordered structure, the confined n-hexadecane exhibited a transition from 7 layers to 6 in our simulations while undergoing an increasing shear velocity. Various slip regimes of the confined n-hexadecane were obtained. Viscosity coefficients of individual layers were examined and the results revealed that the local viscosity coefficient varies with the distance from the wall. The individual n-hexadecane layers showed the shear-thinning behaviors which can be correlated with the occurrence of the slip. This study aimed at elucidating the detailed shear response of the confined liquid and may be used in the design and application of micro- and nano-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. White, F.M., Fluid Mechanics. New York: McGraw-Hill, 1994.

    Google Scholar 

  2. Granick, S., Motions and relaxations of confined liquids. Science, 1991, 253: 1374–1379.

    Article  Google Scholar 

  3. Horn, R.G. and Israelachvili, J.N., Direct measurement of structural forces between two surfaces in a non-polar liquid. Journal of Chemical Physics, 1981, 75: 1400–1411.

    Article  Google Scholar 

  4. Heuberger, H., Zach, M. and Spencer, N.D., Density fluctuations under confinement: when is a fluid not a fluid? Science, 2001, 292: 905–908.

    Article  Google Scholar 

  5. Gee, M.L., McGuiggan, P.M., Israelachvilil, J.N. and Homola, A.M., Liquid to solidlike transitions of molecularly thin films under shear. Journal of Chemical Physics, 1990, 93: 1895–1906.

    Article  Google Scholar 

  6. Zhu, Y.X. and Granick, S., Superlubricity: a paradox about confined fluids resolved. Physical Review Letters, 2004, 93: 096101.

    Article  Google Scholar 

  7. Bhushan, B., Israelachvili, J.N. and Landman, U., Nanotribology: friction, wear and lubrication at the atomic scale. Nature, 1995, 374: 607–616.

    Article  Google Scholar 

  8. Demirel, A.L. and Granick, S., Origins of solidification when a simple molecular fluid is confined between two plates. Journal of Chemical Physics, 2001, 115: 1498–1512.

    Article  Google Scholar 

  9. Mukhopadhyay, A., Bae, S.C., Zhao, J. and Granick, S., How confined lubricants diffuse during shear. Physical Review Letters, 2004, 93: 236105.

    Article  Google Scholar 

  10. Karniadakis, G., Beskok, A. and Aluru, N., Microflows and Nanoflows: Fundamentals and Simulation. New York: Springer, 2005.

    MATH  Google Scholar 

  11. Yuan, Q.Z. and Zhao, Y.P., Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. Journal of the American Chemical Society, 2009, 131: 6374–6376.

    Article  Google Scholar 

  12. Qin, X.C., Yuan, Q.Z., Zhao, Y.P., Xie, S.B. and Liu, Z.F., Measurement of the rate of water translocation through carbon nanotubes. Nano Letters, 2011, dx.doi.org/10.1021/nl200843g.

  13. McGuiggan, P.M., Gee, M.L., Yoshizawa, H., Hirz, S.J. and Israelachvili, J.N., Friction studies of polymer lubricated surfaces. Macromolecules, 2007, 40(6): 2126–2133.

    Article  Google Scholar 

  14. Lim, R., Li, S.F.Y. and O’Shea, S.J., Solvation forces using sample-modulation atomic force microscopy. Langmuir, 2002, 18: 6116–1624.

    Article  Google Scholar 

  15. Patil, S., Mater, G., Oral, A. and Hoffmann, P.M., Solid or liquid? solidification of a nanoconfined liquid under nonequilibrium conditions. Langmuir, 2006, 22: 6485–6488.

    Article  Google Scholar 

  16. Cui, S.T., Gupta, S.A., Cummings, P.T. and Cochran, H.D., Molecular dynamics simulations of the rheology of normal decane, hexadecane, and tetracosane. Journal of Chemical Physics, 1996, 105: 1214–1220.

    Article  Google Scholar 

  17. Gao, J.P., Luedtke, W.D. and Landman, U., Origins of solvation forces in confined films. Journal of Physical Chemistry B, 1997, 101: 4013–4023.

    Article  Google Scholar 

  18. Israelachvili, J.N., Intermolecular and Surface Forces. San Diego: Academic Press, 1992.

    Google Scholar 

  19. Yin, J. and Zhao, Y.P., Hybrid QM/MM simulation of the hydration phenomena of dipalmitoylphosphatidylcholine headgroup. Journal of Colloid and Interface Science, 2009, 329: 410–415.

    Article  Google Scholar 

  20. Yang, C.Y. and Zhao, Y.P., Influences of hydration force and elastic strain energy on stability of solid film in very thin solid-on-liquid structure. Journal of Chemical Physics, 2004, 120: 5366–5376.

    Article  Google Scholar 

  21. Yamada, S., Layering transitions and tribology of molecularly thin films of poly(dimethylsiloxane). Langmuir, 2003, 19: 7399–7405.

    Article  Google Scholar 

  22. Jabbarzadeh, A., Harrowell, P. and Tanner, R.I., Very low friction state of a dodecane film confined between mica surfaces. Physical Review Letters, 2005, 94: 126103.

    Article  Google Scholar 

  23. Jabbarzadeh, A., Harrowell, P. and Tanner, R.I., Crystal bridge formation marks the transition to rigidity in a thin lubrication film. Physical Review Letters, 2006, 96: 206102.

    Article  Google Scholar 

  24. Bureau, L., Rate effects on layering of a confined linear alkane. Physical Review Letters, 2007, 99: 225503.

    Article  Google Scholar 

  25. Cui, S.T., McCabe, C., Cummings, P.T. and Cochran, H.D., Molecular dynamics study of the nano-rheology of n-dodecane confined between planar surfaces. Journal of Chemical Physics, 2003, 118: 8941–8944.

    Article  Google Scholar 

  26. Reiner, M., The Deborah number. Physics Today, 1964, 17: 62.

    Article  Google Scholar 

  27. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity. Oxford: Butterworth-Heinemann, 1999.

    MATH  Google Scholar 

  28. Kumacheva, E. and Klein, J., Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films. Journal of Chemical Physics, 1998, 108: 7010–7022.

    Article  Google Scholar 

  29. Khan, S.H., Matei, G., Patil, S. and Hoffmann, P.M., Dynamic solidification in nanoconfined water films. Physical Review Letters, 2010, 105: 106101.

    Article  Google Scholar 

  30. Bureau, L., Nonlinear rheology of a nanoconfined simple fluid. Physical Review Letters, 2010, 104: 218302.

    Article  Google Scholar 

  31. Granick, S., Bae, S.C., Kumar, S. and Yu, C., Confined liquid controversies near closure? Physics, 2010, 3: 73.

    Article  Google Scholar 

  32. Huang, D.M., Sendner, C., Horinek, D., Netz, R.R. and Bocquet, L., Water slippage versus contact angle: a quasiuniversal relationship. Physical Review Letters, 2008, 101: 226101.

    Article  Google Scholar 

  33. Granick, S., Lee, H. and Zhu, Y., Slippery questions of stick when fluid flows past surfaces. Nature Materials, 2003, 2: 221–227.

    Article  Google Scholar 

  34. De Gennes, P.G., On fluid/wall slippage. Langmuir, 2002, 18: 3413–3414.

    Article  Google Scholar 

  35. Thompson, P.A. and Troian, S.M., A general boundary condition for liquid flow at solid surfaces. Nature, 1997, 389: 360–362.

    Article  Google Scholar 

  36. Lauga, E., Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. Langmuir, 2004, 20: 8924–8930.

    Article  Google Scholar 

  37. Schmatko, T., Hervet, H. and Leger, L., Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Physical Review Letters, 2005, 94: 244501.

    Article  Google Scholar 

  38. Vinogradova, O.I., Slippage of water over hydrophobic surfaces. International Journal of Mineral Processing, 1999, 56: 31–60.

    Article  Google Scholar 

  39. Jabbarzadeh, A., Atkinson, J.D. and Tanner, R.I., Wall slip in the molecular dynamics simulation of thin films of hexadecane. Journal of Chemical Physics, 1999, 110: 2612–2620.

    Article  Google Scholar 

  40. Jabbarzadeh, A., Atkinson, J.D. and Tanner, R.I., Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls. Physical Review E, 2000, 61: 690–699.

    Article  Google Scholar 

  41. Pit, R., Hervet, H. and Leger, L., Direct experimental evidence of slip in hexadecane: solid interfaces. Physical Review Letters, 2000, 85: 980–983.

    Article  Google Scholar 

  42. Zhu, Y.X. and Granick, S., Rate-dependent slip of Newtonian liquid at smooth surfaces. Physical Review Letters, 2001, 87: 096105.

    Article  Google Scholar 

  43. Plimpton, S., Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 1995, 117: 1–19.

    Article  Google Scholar 

  44. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P., The missing term in effective pair potentials. Journal of Physical Chemistry, 1987, 91: 6269–6271.

    Article  Google Scholar 

  45. Hoover, W.G., Canonical dynamics: equilibrium phase-space distributions. Physical Review A, 1985, 31: 1695–1697.

    Article  Google Scholar 

  46. Stuart, S.J., Tutein, A.B. and Harrison, J.A., A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics, 2000, 112: 6472–6486.

    Article  Google Scholar 

  47. Halicioglu, T. and Pound, G.M., Calculation of potential energy parameters from crystalline state properties. Physica Status Solidi A: Applied Research, 1975, 30: 619–623.

    Article  Google Scholar 

  48. Dauberosguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Structure and energetics of ligand binding to proteins: escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins-Structure Function and Genetics, 1988, 4: 31–47.

    Article  Google Scholar 

  49. Ardekani, A.M. and Joseph, D.D., Instability of stationary liquid sheets. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 4992–4996.

    Article  Google Scholar 

  50. De Gennes, P.G., Brochard-Wyart, F. and Quere, D., Capillarity and Wetting Phenomena. New York: Springer, 2004.

    Book  Google Scholar 

  51. Brochard-Wyart, F., Raphael, E. and Vovelle, L., Démouillage en régime inertiel: apparitions d’ondes capillaries. Comptes Rendus de l’Académie des Sciences, 1995, 321: 367–370.

    Google Scholar 

  52. Wang, F.C., Feng, J.T. and Zhao, Y.P., The head-on colliding process of binary liquid droplets at low velocity: High-speed photography experiments and modeling. Journal of Colloid and Interface Science, 2008, 326: 196–200.

    Article  Google Scholar 

  53. Yuan, Q.Z. and Zhao, Y.P., Precursor film in dynamic wetting, electrowetting and electro-elasto-capillarity. Physical Review Letters, 2010, 104: 246101.

    Article  Google Scholar 

  54. Li, J., AtomEye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering, 2003, 11: 173–177.

    Article  Google Scholar 

  55. Jabbarzadeh, A. and Tanner, R.I., Crystallization of alkanes under quiescent and shearing conditions. Journal of Non-Newtonian Fluid Mechanics, 2009, 160: 11–21.

    Article  Google Scholar 

  56. Drummond, C., Alcantar, N. and Israelachvili, J., Shear alignment of confined hydrocarbon liquid films. Physical Review E, 2002, 66: 011705.

    Article  Google Scholar 

  57. Martini, A., Roxin, A., Snurr, R.Q., Wang, Q. and Lichter, S., Molecular mechanisms of liquid slip. Journal of Fluid Mechanics, 2008, 600: 257–269.

    Article  Google Scholar 

  58. Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics. Oxford: Calderon Press, 1986.

    Google Scholar 

  59. Yin, J., Zhao, Y.P. and Zhu, R.Z., Molecular dynamics simulation of barnacle cement. Materials Science and Engineering A, 2005, 409: 160–166.

    Article  Google Scholar 

  60. Berker, A., Chynoweth, S., Klomp, U.C. and Michopoulos, Y., Non-equilibrium molecular dynamics (NEMD) simulations and the rheological properties of liquid n-hexadecane. Journal of the Chemical Society-Faraday Transactions, 1992, 88: 1719–1725.

    Article  Google Scholar 

  61. Thompson, P.A., Robbins, M.O. and Grest, G.S., Structure and shear response in nanometer thick films. Israel Journal of Chemistry, 1995, 35: 93–106.

    Article  Google Scholar 

  62. Wohlfarth, C. and Wohlfahrt, B., Pure Organic Liquids. New York: Springer, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yapu Zhao.

Additional information

Project supported by the National Natural Science Foundation of China (NSFC, Nos. 60936001 and 11072244), the National Basic Research Program of China (973 Program, No. 2007CB310500) and the Shanghai Supercomputer Center.

This paper is an invited paper for cerebrating the 30th Anniversary of Acta Mechanica Solida Sinica

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Zhao, Y. The unique properties of the solid-like confined liquid films: A large scale molecular dynamics simulation approach. Acta Mech. Solida Sin. 24, 101–116 (2011). https://doi.org/10.1016/S0894-9166(11)60012-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60012-8

Key words

Navigation