Skip to main content
Log in

Transient response of a bi-layered multiferroic composite plate

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, a three-dimensional finite-element formulation for the multiferroic composite is developed and implemented into the commercial software ABAQUS for its transient analysis. First, a special three-dimensional eight-node solid element is designed to handle the multiferroic composite made of elastic, piezoelectric, and piezomagnetic materials. Second, a user-defined subroutine for this newly developed element is implemented into ABAQUS. Finally, the transient responses of a bi-layered multiferroic composite are calculated by using the direct time integration method. Two typical magnetic potential signals, Gauss and Ricker pulses, are applied to the composite with various time durations of excitation. The induced electric field shows that the transient response can be substantially influenced by the input signal, which could be tuned for the strongest electric output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nan, C.W., Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physical Review B, 1994, 50: 6082–6088.

    Article  Google Scholar 

  2. Wu, T.L. and Huang, J.H., Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. International Journal of Solids and Structures, 2000, 37: 2981–3009.

    Article  Google Scholar 

  3. Pan, E., Exact solution for simply supported and multilayered magneto-electro-elastic plate. Journal of Applied Mechanics, 2001, 68: 608–618.

    Article  Google Scholar 

  4. Chen, W.Q. and Lee, K.Y., Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. International Journal of Solids and Structures, 2003, 40: 5689–5705.

    Article  Google Scholar 

  5. Dong, S.X., Li, J.F. and Viehland, D., Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50: 1253–1261.

    Article  Google Scholar 

  6. Pan, E., Wang, X. and Wang, R., Enhancement of magnetoelectric effect in multiferroic fibrous nanocomposites via size-dependent material properties. Applied Physics Letter, 2009, 95: 181904.

    Article  Google Scholar 

  7. Zhang, C.L., Yang, J.S. and Chen, W.Q., Magnetoelectric effects in multiferroic bilayers for coupled flexure and extensions. Journal of Intelligent Material Systems and Structures, 2010, 21: 851–855.

    Article  Google Scholar 

  8. Wang, R., Han, Q.K. and Pan, E., An analytical solution for a multilayered magneto-electro-elastic circular plate under simply supported lateral boundary conditions. Smart Materials and Structures, 2010, 19: 065025.

    Article  Google Scholar 

  9. Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N., Layerwise partial mixed finite element analysis of magneto-electro-elastic plates. Computers and Structrues, 2004, 82: 1293–1301.

    Article  Google Scholar 

  10. Liu, G., Nan, C.W., Cai, N. and Lin, Y.H., Calculations of giant magnetoelectric effect in multiferroic composites of rare-earth-iron alloys and PZT by finite element method. International Journal of Solids and Structures, 2004, 41: 4423–4434.

    Article  Google Scholar 

  11. Bhangale, R.K. and Ganesan, N., Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. International Journal of Solids and Structure, 2006, 43: 3230–3253.

    Article  Google Scholar 

  12. Pan, E. and Wang, R., Effects of geometric size and mechanical boundary conditions on magnetoelectric coupling in multiferroic composites. Journal of Physics D: Applied Physics, 2009, 42: 245503.

    Article  Google Scholar 

  13. Ward, M. and Buttry, D., In situ interfacial mass detection with piezoelectric transducers. Science, 1990, 245: 1000–1007.

    Article  Google Scholar 

  14. Sirohi, J., Fundamental understanding of piezoelectric strain sensors. Journal of Intelligent Material Systems and Structures, 2000, 4: 246–257.

    Article  Google Scholar 

  15. Crawley, E.F. and Luis, J., Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal, 1987, 25: 1373–1385.

    Article  Google Scholar 

  16. Kumar, M., Srinivas, A., Suryanarayana, S., Kumar, G. and Bhimasankaram, T., An experimental setup for dynamic measurement of magnetoelectric effect. Bulletin of Materials Science, 1998, 21: 251–255.

    Article  Google Scholar 

  17. Srinivasan, G., Vreugd, C., Laletin, V.M., Paddubnaya, N., Bichurin, M.I., Petrov, V.M. and Filippov, D.A., Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate: The influence of bias magnetic field. Physical Review B, 2005, 71: 184423.

    Article  Google Scholar 

  18. Bichurin, M.I., Filippov, D.A., Petrov, V.M., Laletsin, V.M., Paddubnaya, N. and Srinivasan, G., Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Physical Review B, 2003, 68: 132408.

    Article  Google Scholar 

  19. Filippov, D.A., Bichurin, M.I., Petrov, V.M., Laletin, V. M., Poddubnaya, N. and Srinivasan, G., Giant magnetoelectric effect in composite materials in the region of electromechanical resonance. Technical Physics Letters, 2004, 30: 15–20.

    Article  Google Scholar 

  20. Gheevarughese, V., Laletsin, U., Petrov, V.M., Srinivasan, G. and Fedotov, N.A., Low-frequency and resonance magnetoelectric effects in lead zirconate titanate and single-crystal nickel zinc ferrite bilayers. Journal of Materials Research, 2007, 22: 2130–2135.

    Article  Google Scholar 

  21. Wang, H.M., Pan, E. and Chen, W.Q., Enhancing magnetoelectric effect via the curvature of composite cylinder. Journal of Applied Physics, 2010, 107: 093514.

    Article  Google Scholar 

  22. Hou, P. and Leung, A.Y.T., The transient responses of magneto-electro-elastic hollow cylinders. Smart Materials and Structures, 2004, 13: 762–776.

    Article  Google Scholar 

  23. Wang, H.M. and Ding, H.J., Transient responses of a special non-homogeneous magneto-electro-elastic hollow cylinder for a fully coupled axisymmetric plane strain problem. Acta Mechanica, 2006, 184: 137–157.

    Article  Google Scholar 

  24. Daga, A., Ganesan, N. and Shankar, K., Comparative studies of the transient Response for PECP, MSCP, Barium Titanate, magneto-electro-elastic finite cylindrical Shell under constant internal pressure using finite element method. Finite Element Analysis and Design, 2008a, 44: 89–104.

    Article  Google Scholar 

  25. Daga, A., Ganesan, N. and Shankar, K., Transient response of magneto-electro-elastic simply supported cylinder using finite element. Journal of Mechanics of Materials and Structures, 2008b, 3: 375–389.

    Article  Google Scholar 

  26. Daga, A., Ganesan, N. and Shankar, K., Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements. International Journal for Computational Methods in Engineering Science and Mechanics, 2009, 10: 173–185.

    Article  Google Scholar 

  27. Biju, B., Ganesan, N. and Shankar, K., The transient dynamic response of multiphase magneto-electro-elastic sensors bonded to a shell structure. Journal of Materials: Design and Applications, 2010, 224 (In Press).

  28. ABAQUS Version 6.7 Documentation, http://coel3.ecgf.uakron.edu:2080/v6.7Dassault Systemes Simulia.

  29. Hilber, H.M. and Hughes, T.J.R., Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthquake Engineering and Structural Dynamics, 1978, 6: 99–117.

    Article  Google Scholar 

  30. Chandrashekhara, K. and Agarwal, A.N., Active vibration control of laminated composite plates using piezoelectric devices: A finite element approach. Journal of Intelligent Material Systems and Structures, 1993, 4: 496–508.

    Article  Google Scholar 

  31. Thomson, W.T. and Dahleh, M.D., Theory of Vibration with Applications, 5th edn. New Jersey: Prentice Hall, 1993.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernian Pan.

Additional information

Project partially supported by the National Natural Science Foundation of China (No. 50775028).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Han, Q. & Pan, E. Transient response of a bi-layered multiferroic composite plate. Acta Mech. Solida Sin. 24, 83–91 (2011). https://doi.org/10.1016/S0894-9166(11)60010-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60010-4

Key words

Navigation