Skip to main content
Log in

Surface stress effect in mechanics of nanostructured materials

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This review article summarizes the advances in the surface stress effect in mechanics of nanostructured elements, including nanoparticles, nanowires, nanobeams, and nanofilms, and heterogeneous materials containing nanoscale inhomogeneities. It begins with the fundamental formulations of surface mechanics of solids, including the definition of surface stress as a surface excess quantity, the surface constitutive relations, and the surface equilibrium equations. Then, it depicts some theoretical and experimental studies of the mechanical properties of nanostructured elements, as well as the static and dynamic behaviour of cantilever sensors caused by the surface stress which is influenced by adsorption. Afterwards, the article gives a summary of the analytical elasto-static and dynamic solutions of a single as well as multiple inhomogeneities embedded in a matrix with the interface stress prevailing. The effect of surface elasticity on the diffraction of elastic waves is elucidated. Due to the difficulties in the analytical solution of inhomogeneities of complex shapes and configurations, finite element approaches have been developed for heterogeneous materials with the surface stress. Surface stress and surface energy are inherently related to crack propagation and the stress field in the vicinity of crack tips. The solutions of crack problems taking into account surface stress effects are also included. Predicting the effective elastic and plastic responses of heterogeneous materials while taking into account surface and interface stresses has received much attention. The advances in this topic are inevitably delineated. Mechanics of rough surfaces appears to deserve special attention due to its theoretical and practical implications. Some most recent work is reviewed. Finally, some challenges are pointed out. They include the characterization of surfaces and interfaces of real nanomaterials, experimental measurements and verification of mechanical parameters of complex surfaces, and the effects of the physical and chemical processes on the surface properties, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbs, J.W., The Scientific Papers of J. Willard Gibbs, Vol.1. London: Longmans-Green, 1906.

    MATH  Google Scholar 

  2. Cammarata, R.C., Surface and interface stress effects on interfacial and nanostructured materials. Materials Science and Engineering, 1997, A237: 180–184.

    Article  Google Scholar 

  3. Shuttleworth, R., The surface tension of solids. Proceedings of the Physical Society A, 1950, 63: 444–457.

    Article  Google Scholar 

  4. Herring, C., The use of classical macroscopic concepts in surface energy problems. In: Structure and Properties of Solid Surfaces (Gomer, R. and Smith, C.S. eds.), pp. 5–81. Chicago: The University of Chicago Press, 1953.

    Google Scholar 

  5. Orowan, E., Surface energy and surface tension in solids and liquids. Proceedings of the Royal Society, 1970, A316: 473–491.

    Article  Google Scholar 

  6. Murr, L.E., Interfacial Phenomena in Metals and Alloys. London: Addison- Wesley, 1975.

    Google Scholar 

  7. Cahn, J.W., Thermodynamics of solid and fluid surfaces. In: Interfacial Segregation (Johnson, W.C. and Blakely, J.M. eds.), pp. 3–23. Ohio: Americal Society for Metals, Metals Park, 1978.

    Google Scholar 

  8. Cammarata, R.C., Surface and interface stresses effects in thin films. Progress in Surface Science, 1994, 46: 1–38.

    Article  Google Scholar 

  9. Ibach, H., The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surface Science Reports, 1997, 29: 195–263.

    Article  Google Scholar 

  10. Haiss, W., Surface stress of clean and adsorbate-covered solids. Reports on Progress in Physics, 2001, 64: 591–648.

    Article  Google Scholar 

  11. Muller, P. and Saul, A., Elastic effects on surface physics. Surface Science Reports, 2004, 54: 157–258.

    Article  Google Scholar 

  12. Rusanov, A.I., Surface thermodynamics revisited. Surface Science Reports, 2005, 58: 111–239.

    Article  Google Scholar 

  13. Kramer, D. and Weissmuller, J., A note on surface stress and surface tension and their interrelation via Shuttleworths equation and the Lippmann equation. Surface Science, 2007, 601: 3042–3051.

    Article  Google Scholar 

  14. Sun, C.Q., Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Progress in Materials Science, 2009, 54: 179–307.

    Article  Google Scholar 

  15. Pomeau, Y. and Villermaux, E., Two hundred years of capillarity research. Physics Today, 2006, March: 39-44.

    Article  Google Scholar 

  16. Laplace, P.S., Mecanique Celeste, Vol.4. Courcier, Paris, 1805.

    Google Scholar 

  17. Young, T., An essay on the cohesion of fluids. Proceedings of the Royal Society, 1805, A95: 65–87.

    Google Scholar 

  18. Lennard-Jones, J.E. and Dent, B.M., The change in lattice spacing at a crystal boundary. Proceedings of the Royal Society, 1928, A121: 247–259.

    Article  Google Scholar 

  19. Nicolson, M.M., Surface tension in ionic crystals. Proceedings of the Royal Society, 1955, A228: 490–510.

    Article  MATH  Google Scholar 

  20. Vermaak, J.S., Mays, C.W. and Kuhlmann-Wilsdorf, D., On surface stress and surface tension. I. Theoretical considerations. Surface Science, 1968, 12: 128–133.

    Article  Google Scholar 

  21. Gurtin, M.E. and Murdoch, A.I., A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 1975, 57: 291–323.

    Article  MathSciNet  MATH  Google Scholar 

  22. Gurtin, M.E. and Murdoch, A.I., Surface stress in solids. International Journal of Solids and Structures, 1978, 14: 431–440.

    Article  MATH  Google Scholar 

  23. Steigmann, D.J. and Ogden, R.W., Elastic surface-substrate interactions. Proceedings of the Royal Society, 1999, A455: 437–474.

    Article  MathSciNet  MATH  Google Scholar 

  24. Weissmuller, J. and Cahn, J.W., Mean stresses in microstructure due to interface stresses: a generalization of a capillary equation for solids. Acta Materialia, 1997, 45: 1899–1906.

    Article  Google Scholar 

  25. Gurtin, M.E., Weissmuller, J. and Larche, F., A general theory of curved deformable interfaces in solids at equilibrium. Philisophical Magazine A, 1998, A78: 1093–1109.

    Article  Google Scholar 

  26. Rottman, C., Landau theory of coherent interphase interface. Physical Review B, 1988, 38: 12031–12034.

    Article  Google Scholar 

  27. Stoney, G.C., The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society, 1909, A82: 172–175.

    Article  Google Scholar 

  28. Cammarata, R.C. and Sieradzki, K., Effect of surface stress on the elastic moduli of thin films and super-lattices. Physical Review Letters, 1989, 62: 2005–2008.

    Article  Google Scholar 

  29. Fartash, A., Fullerton, E.E., Schuller, I.K., Bobbin, S. E., Wagner, J.W., Cammarata, R.C., Kumar, S. and Grimsditch, M., Evidence for the supermodulus effect and enhanced hardness in lettalic superlattices. Physical Review B, 1991, 44: 13760–13763.

    Article  Google Scholar 

  30. Streitz, F.H., Cammarata, R.C. and Sieradzki, K., Surface-stress effects on elastic properties. I. Thin metal films. Physical Review B, 1994, 49:10699–10706.

    Article  Google Scholar 

  31. Streitz, F.H., Cammarata, R.C. and Sieradzki, K., Surface-stress effects on elastic properties. II. Metallic multilayers. Physical Review B, 1994, 49: 10707–10716.

    Article  Google Scholar 

  32. Dingreville, R. and Qu, J., Interfacial excess energy, excess stress and excess strain in elastic solids: Planar interfaces. Journal of the Mechanics and Physics of Solids, 2008, 56: 1944–1954.

    Article  MathSciNet  MATH  Google Scholar 

  33. Duan, H.L., Wang, J. and Karihaloo, B.L., Theory of elasticity at the nano-scale. Advances in Applied Mechanics, 2009, 42: 1–68.

    Article  Google Scholar 

  34. Theocaris, P.S., The Mesophase Concept in Composites. Berlin: Springer Verlag, 1987.

    Book  Google Scholar 

  35. Zhang, T.-Y. and Hack, J.E., On the elastic stiffness of grain boundaries. Physica Status Solidi A, 1992, 131: 437–443.

    Article  Google Scholar 

  36. Schiotz, J., Di Tolla, F.D. and Jacobsen, K.W., Softening of nanocrystalline metals at very small grain sizes. Nature, 1998, 391: 561–563.

    Article  Google Scholar 

  37. Wei, Y.J. and Anand, L., Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. Journal of the Mechanics and Physics of Solids, 2004, 52: 2587–2616.

    Article  MATH  Google Scholar 

  38. Weng, G.J. A composite model of nanocrystalline materials. In: Mechanical Properties of Nanocrystalline Materials(Li, J.C.M. ed.). Hackensack, NJ: Pan Stanford Publishing, C/o World Scientific Publishing Co., Inc., 2010.

    Google Scholar 

  39. Benveniste, Y., The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mechanics of Materials, 1985, 4: 197–208.

    Article  Google Scholar 

  40. Hashin, Z., Thermoelastic properties of particulate composites with imperfect interface. Journal of the Mechanics and Physics of Solids, 1991, 39: 745–762.

    Article  MathSciNet  Google Scholar 

  41. Qu, J., The effect of slightly weakened interfaces on the overall elastic properties of composites. Mechanics of Materials, 1993, 14: 269–281.

    Article  Google Scholar 

  42. Zhong, Z. and Meguid, S.A., On the elastic field of a spherical inhomogeneity with an imperfectly bonded interface. Journal of Elasticity, 1997, 46: 91–113.

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, G.F., Feng, X.Q., Yu, S.W. and Nan, C.W., Interface effects on effective elastic moduli of nanocrystalline materials. Materials Science and Engineering A, 2003, 363: 1–8.

    Article  Google Scholar 

  44. Jiang, B. and Weng, G.J., A composite model for the grain-size dependence of yield stress of nanograined materials. Metallurgical and Materials Transactions, 2003, A34: 765–772.

    Article  Google Scholar 

  45. Jiang, B. and Weng, G.J., A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. Journal of the Mechanics and Physics of Solids, 2004, 52: 1125–1149.

    Article  MATH  Google Scholar 

  46. Wu, Y.M., Huang, Z.P., Zhong, Y. and Wang, J., Effective moduli of particle-filled composite with inhomogeneous interphase — Part I: bounds. Composites Science and Technology, 2004, 64: 1345–1351.

    Article  Google Scholar 

  47. Zhong, Y., Wang, J., Wu, Y.M. and Huang, Z.P., Effective moduli of particle-filled composite with inhomogeneous interphase — Part II: mapping method and evaluation. Composites Science and Technology, 2004, 64: 1353–1362.

    Article  Google Scholar 

  48. Shen, L.X. and Li, J., Homogenization of a fibre/sphere with an inhomogeneous interphase for the effective elastic moduli of composites. Proceedings of the Royal Society, 2005, A461: 1475–1504.

    Article  Google Scholar 

  49. Duan, H.L., Wang, J., Huang, Z.P. and Zhong, Y., Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings. Proceedings of the Royal Society, 2005, A461: 1055–1080.

    Article  MathSciNet  MATH  Google Scholar 

  50. Tan, H., Huang, Y., Liu, C. and Geubelle, P.H., The Moric Tanaka method for composite materials with nonlinear interface debonding. International Journal of Plasticity, 2005, 21: 1890–1918.

    Article  MATH  Google Scholar 

  51. Zhang, W.X., Li, L.X. and Wang, T.J., Interphase effect on the strengthening behavior of particle-reinforced metal matrix composites. Computational Materials Science, 2007, 41: 145–155.

    Article  Google Scholar 

  52. Zhu, L.L. and Zheng, X.J., Influence of interface energy and grain boundary on the elastic modulus of nanocrystalline materials. Acta Mechanica, 2010, 213: 223–234.

    Article  MATH  Google Scholar 

  53. Rubin, M.B. and Benveniste, Y., A Cosserat shell model for interphases in elastic media. Journal of the Mechanics and Physics of Solids, 2004, 52: 1023–1052.

    Article  MathSciNet  MATH  Google Scholar 

  54. Benveniste, Y. and Miloh, T., Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 2001, 33: 309–323.

    Article  Google Scholar 

  55. Hashin, Z., The interphase/imperfect interface in elasticity with application to coated fiber composites. Journal of the Mechanics and Physics of Solids, 2002, 50: 2509–2537.

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang, J., Duan, H.L., Zhang, Z. and Huang, Z.P., An anti-interpenetration model and connections between interphase and interface models in particle-reinforced composites. International Journal of Mechanical Sciences, 2005, 47: 701–718.

    Article  MATH  Google Scholar 

  57. Benveniste, Y., A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids, 2006, 54: 708–734.

    Article  MathSciNet  MATH  Google Scholar 

  58. Bovik, P., On the modelling of thin interface layers in elastic and acoustic scattering problems. Quarterly Journal of Mechanics and Applied Mathematics, 1994, 47: 17–42.

    Article  MathSciNet  MATH  Google Scholar 

  59. Nix, W.D. and Gao, H.J., An atomistic interpretation of interface stress. Scripta Materialia, 1998, 39: 1653–1661.

    Article  Google Scholar 

  60. Pan, X.H., Yu, S.W. and Feng, X.Q., Oriented thermomechanics of isothermal planar elastic surfaces under small deformation. Presented at, and to appear in the Proceedings of, the IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. Beijing, August, 2010.

  61. Huang, Z.P. and Wang, J., A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mechanica, 2006, 182: 195–210.

    Article  MATH  Google Scholar 

  62. Huang, Z.P. and Sun, L., Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mechanica, 2007, 190: 151–163.

    Article  MATH  Google Scholar 

  63. Wang, J., Duan, H.L., Huang, Z.P. and Karihaloo, B.L., A scaling law for properties of nano-structured materials. Proceedings of the Royal Society, 2006, A462: 1355–1363.

    Article  MATH  Google Scholar 

  64. Duan, H.L., Yi, X., Huang, Z.P. and Wang, J., A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part II — application and scaling laws. Mechanics of Materials, 2007, 39: 94–103.

    Article  Google Scholar 

  65. Palla, P.L., Giordano, S. and Colombo, L., Lattice model describing scale effects in nonlinear elasticity of nanoinhomogeneities. Physical Review B, 2010, 81: Art. 214113.

  66. Zhang, T.-Y., Wang, Z.J. and Chan, W.K., Eigenstress model for surface stress of solids. Physical Review B, 2010, 81: Art. 195427.

  67. Green, A.E. and Zerna, W., Theoretical Elasticity. London: Oxford University Press, 1954.

    MATH  Google Scholar 

  68. Chu, H.J., Mechanics of semiconductor quantum dot structures. PhD Thesis, Department of Mechanics and Engineering Science, Peking University, 2006.

  69. Povstenko, Y.Z., Theoretical investigation of phenomena caused by heterogeneous surface-tension in solids. Journal of the Mechanics and Physics of Solids, 1993, 41: 1499–1514.

    Article  MathSciNet  MATH  Google Scholar 

  70. Duan, H.L., Interface effect in mechanics of heterogeneous materials. PhD Thesis, Department of Mechanics and Engineering Science, Peking University, 2005.

  71. Chen, T., Chiu, M.-S. and Weng, C.N., Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 2006, 100: Art. 074308.

    Article  Google Scholar 

  72. Chen, H., Hu, G.K. and Huang, Z.P., Effective moduli for micropolar composite with interface effect. International Journal of Solids and Structures, 2007, 44: 8106–8118.

    Article  MATH  Google Scholar 

  73. Sun, L., Wu, Y.M., Huang, Z.P. and Wang, J., Interface effect on the effective bulk modulus of a particle-reinforced composite. Acta Mechanica Sinica (English series), 2004, 20: 676–679.

    Article  Google Scholar 

  74. Huang, Z.P., Wang, Z.Q., Zhao, Y.P. and Wang, J, Influence of particle-size distribution on effective properties of nanocomposites. In: Advances in Heterogeneous Material Mechanics (ICHMM-2008) (Fan, J.H. and Chen, H.B. eds.), pp. 925–932. Pennsylvania: Destech Publications, 2008.

    Google Scholar 

  75. Ru, C.Q., Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Science China Physics, Mechanics & Astonomy, 2010, 53: 536–544.

    Article  Google Scholar 

  76. Altenbach, H., Eremeyev, V.A. and Lebedev, L.P., On the existence of solution in the linear elasticity with surface stresses. ZAMM (Journal of Applied Mathematics and Mechanics), 2010, 90: 231–240.

    Article  MathSciNet  MATH  Google Scholar 

  77. Fisher, F.D., Waitz, T., Vollath, D. and Simha, N.K., On the role of surface energy and surface stress in phase-transforming nanoparticles. Progress in Materials Science, 2008, 53: 481–527.

    Article  Google Scholar 

  78. Dunham, R.S. and Gurtin, M.E., Surface stress and the equilibrium shape of an ealstic crystal. Journal of Applied Physics, 1977, 30: 255–256.

    Google Scholar 

  79. Huang, Z.X., and Zheng, Q.-S., Effects of the surface energy on the lattice contraction and eigen-frequency of a nano-grain. Acta Mechanica Sinica, 1998, 30: 247–251 (in Chinese).

    Google Scholar 

  80. Liang, L.H., Ma, H.S. and Wei, Y.G., Size-dependent elastic modulus and vibration frequency of nanocrystals. Journal of Nanomaterial, 2010, 2011: Art. 670857.

    Google Scholar 

  81. Cammarata, R.C. and Eby, R.K., Effects and measurement of internal surface stresses in materials with ultrafine microstructures. Journal of Materials Research, 1991, 6: 888–890.

    Article  Google Scholar 

  82. Gumbsch, P. and Daw, M.S., Interface stresses and their effects on the elastic moduli of metallic multilayers. Physical Review B, 1991, 44: 3934–3938.

    Article  Google Scholar 

  83. Ruud, J.A., Witvrouw, A. and Spaepen, F., Bulk and interface stresses in silver-nickel multilayered thin films. Journal of Applied Physics, 1993, 74: 2517–2523.

    Article  Google Scholar 

  84. Berger, S. and Spaepen, F., The Ag/Cu interface stress. NanoStructured Materials, 1995, 6: 201–204.

    Article  Google Scholar 

  85. Josell, D., Bonevich, J.E., Shao, I. and Cammarata, R.C., Measuring the interface stress: Silver/nickel interfaces. Journal of Materials Research, 1999, 14: 4358–4365.

    Article  Google Scholar 

  86. Gilbert, B., Huang, F., Zhang, H., Waychunas, G.A. and Banfield, J.F., Nanoparticles: Strained and stiff. Science, 2004, 305: 651–654.

    Article  Google Scholar 

  87. Ouyang, G., Li, X.L., Tang, X. and Yang, G.W., Size-induced strain and stiffness of nanocrystals. Applied Physics Letters, 2006, 89: Art. 031904.

    Article  Google Scholar 

  88. Dingreville, R., Qu, J. and Cherkaoui, M., Surface free energy and its effect on the elastic behavior of nanosized particles, wires and films. Journal of the Mechanics and Physics of Solids, 2005, 53: 1827–1854.

    Article  MathSciNet  MATH  Google Scholar 

  89. Huang, Z.X., Thomson, P. and Di, S.L., Lattic contraction of a nanoparticle due to the surface tension: A model of elasticity. Journal of Physics and Chemistry of Solids, 2007, 68: 530–535.

    Article  Google Scholar 

  90. Tolman, R.C., The effect of droplet size on surface tension. Journal of Chemical Physics, 1949, 17: 333–337.

    Article  Google Scholar 

  91. Wong, E.W., Sheehan, P.E. and Lieber, C.M., Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277: 1971–1975.

    Article  Google Scholar 

  92. Miller, R.E. and Shenoy, V.B., Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 2000, 11: 139–147.

    Article  Google Scholar 

  93. Daw, M.S. and Baskes, M.I., Embedded-atom methof: derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29: 6443–6453.

    Article  Google Scholar 

  94. Stillinger, F.H. and Weber, T.A., Computer-simulation of local order in condensed phases of silicon. Physical Review B, 1985, 31: 5262–5271.

    Article  Google Scholar 

  95. Shenoy, V.B., Size-dependent rigidities of nanosized torsional elements. International Journal of Solids and Structures, 2002, 39: 4039–4052.

    Article  MATH  Google Scholar 

  96. Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B, 2004, 69: 165410–165413.

    Article  Google Scholar 

  97. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J. and Yu, D.P., Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physical Review B, 2006, 73: Art. 235409.

  98. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J. and Yan, Y.J., Size dependence of Youngs modulus in ZnO nanowires. Physical Review Letters, 2006, 96: Art. 075505.

  99. Pirota, K.R., Silva, E.L., Zanchet, D., Navas, D., Vazquez, M., Hernandez-Velez, M. and Knobel, M., Size effect and surface tension measurements in Ni and Co nanowires. Physical Review B, 2007, 76: Art. 233410.

  100. Tan, E.P.S., Zhu, Y., Yu, T., Dai, L., Sow, C.H., Tan, V.B.C. and Lim, C.T., Crystallinity and surface effects on Young’s modulus of CuO nanowires. Applied Physics Letters, 2007, 90: Art. 163112.

    Article  Google Scholar 

  101. Gavan, K.B., Westra, H.J.R., van der Drift, E.W.J.M., Venstra, W.J. and van der Zant, H.S.J., Size-dependent effective Young’s modulus of silicon nitride cantilevers. Applied Physics Letters, 2009, 94: Art. 233108.

    Article  Google Scholar 

  102. Dingreville, R. and Qu, J., A semi-analytical method to compute surface elastic properties. Acta Materialia, 2007, 55: 141–147.

    Article  Google Scholar 

  103. Lee, B. and Rudd, R.E., First-principles study of the Youngs modulus of Si⟨001⟩ nanowires. Physical Review B, 2007, 75: Art. 041305(R).

  104. Wang, G.F. and Li, X.D., Size dependency of the elastic modulus of ZnO nanowires: Surface stress effect. Applied Physics Letters, 2007, 91: Art. 231912.

    Article  Google Scholar 

  105. Wang, G.F. and Li, X.D., Predicting Young’s modulus of nanowires from first-principles calculations on their surface and bulk materials. Journal of Applied Physics, 2008, 104: Art. 113517.

    Article  Google Scholar 

  106. Guo, J.G. and Zhao, Y.P., The size-dependent elastic properties of nanofilms with surface effects. Journal of Applied Physics, 2005, 98: Art. 074306.

    Article  Google Scholar 

  107. Guo, J.G. and Zhao, Y.P., The surface- and size-dependent elastic moduli of nanostructures. Surface Review and Letters, 2007, 14: 667–670.

    Article  Google Scholar 

  108. Guo, J.G. and Zhao, Y.P., The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology, 2007, 18: Art. 295701.

    Article  Google Scholar 

  109. Wang, G.F., Feng, X.Q. and Yu, S.W., Surface buckling of a bending microbeam due to surface elasticity. Europhysics Letters, 2007, 77: Art. 44002.

  110. Cao, G.X. and Chen, X., Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations. Physical Review B, 2007, 76: Art. 165407.

  111. Cao, G.X. and Chen, X., Size dependence and orientation dependence of elastic properties of ZnO nanofilms. International Journal of Solids and Structures, 2008, 45: 1730–1753.

    Article  MATH  Google Scholar 

  112. He, J. and Lilley, C.M., Surface effect on the elastic behavior of static bending nanowires. Nano Letters, 2008, 8: 1798–1802.

    Article  Google Scholar 

  113. Zhu, H.X., The effects of surface and initial stresses on the bending stiffness of nanowires. Nanotechnology, 2008, 19: Art. 405703.

    Article  Google Scholar 

  114. Wang, J.S., Feng, X.Q., Wang, G.F. and Yu, S.W., Twisting of nanowries induced by anisotropic surface stresses. Applied Physics Letters, 2008, 92: 191901.

    Article  Google Scholar 

  115. Ye, H.M. Wang, J.S., Tang, S., Xu, J., Feng, X.Q., Guo, B.H., Xie, X.M., Zhou, J.J., Li, L., Wu, Q. and Chen, G.Q., Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules, 2010, 43: 5762–5770.

    Article  Google Scholar 

  116. Zhang, J.-H., Huang, Q.-A., Yu, H. and Wang, J., The influence of surface effects on size-dependent mechanical properties of silicon nanobeams at finite temperature. Journal of Physics D: Applied Physics, 2009, 42: Art. 045409.

    Article  Google Scholar 

  117. Zheng, X.P., Cao, Y.P., Li, B., Feng, X.Q. and Wang, G.F., Surface effects in various bending-based test methods for measuring the elastic property of nanowires. Nanotechnology, 2010, 21: Art. 205702.

    Article  Google Scholar 

  118. Wang, Z.Q., Zhao, Y.P. and Huang, Z.P., The effects of surface tension on the elastic properties of nano structures. International Journal of Engineering Science, 2010, 48: 140–150.

    Article  Google Scholar 

  119. Huang, G.Y. and Yu, S.W., Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi (b), 2006, 243: R22–R24.

    Article  Google Scholar 

  120. Pan, X.H., Yu, L., Yu, S.W. and Feng, X.Q., A continuum theory for nanosized piezoelectric and piezomagnetic solids with surface effects. In: Proceedings of the 14th International Symposium on Applied Electromagnetics and Mechanics, September 20–24, 2009, Xi’an, China. Eds. by Z. Chen et al., 2009, 533-534.

  121. Wang, G.F. and Feng, X.Q., Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhysics Letters, 2010, 91: Art. 56007.

    Article  Google Scholar 

  122. Zhu, L.L., Qiao, L. and Zheng, X.J., Molecular dynamics simulation of the elastic properties of metal nanowires in a transverse electric field. Nanotechnology, 2007, 18: Art. 385703.

    Article  Google Scholar 

  123. Zheng, X.J., and Zhu, L.L., Theoretical analysis of electric field effect on Young’s modulus of nanowires. Applied Physics Letters, 2006, 89: Art. 153110.

    Article  Google Scholar 

  124. Zhu, L.L. and Zheng, X.J., Transverse surface mechanical behavior and modified elastic modulus for charged nanostructures. Europhysics Letters, 2008, 83: Art. 66007.

    Article  Google Scholar 

  125. Zhu, L.L. and Zheng, X.J., Modification of the elastic properties of nanostructures with surface charges in applied electric fields. European Journal of Mechanics A/Solids, 2010, 29: 337–347.

    Article  Google Scholar 

  126. McDowell, M.T., Leach, A.M. and Gall, K., Bending and tensile deformation of metallic nanowires. Modelling and Simulation in Materials Science and Engineering, 2008, 16: Art. 045003.

    Article  Google Scholar 

  127. McDowell, M.T., Leach, A.M. and Gall, K., On the elastic modulus of metallic nanowires. Nano Letters, 2008, 8: 3613–3618.

    Article  Google Scholar 

  128. Zhang, T.-Y., Luo, M. and Chan, W.K., Size-dependent surface stress, surface stiffness and Young’s modulus of hexagonal prism [111] β-SiC nanowires. Journal of Applied Physics, 2008, 103: Art. 104308.

    Article  Google Scholar 

  129. Wang, G.F. and Feng, X.Q., Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied Physics Letters, 2007, 90: Art. 231904.

    Article  Google Scholar 

  130. Wang, G.F. and Feng, X.Q., Surface effects on buckling of nanowires under uniaxial compression. Applied Physics Letters, 2009, 94: Art. 141913.

    Article  Google Scholar 

  131. Wang, G.F., and Feng, X.Q., Timoshenko beam model for buckling and vibration of nanowires with surface effects. Journal of Physics D: Applied Physics, 2009b, 42: Art. 155411.

    Article  Google Scholar 

  132. Wang, J.S., Cui, Y.H., Feng, X.Q., Wang, G.F. and Qin, Q.H., Surface effects on the elasticity of nanosprings. Europhysics Letters, 2010, 92: 16002–1-6.

    Article  Google Scholar 

  133. Wang, J.S., Feng, X.Q., Xu, J., Qin, Q.H. and Yu, S.W., Chirality transfer from molecular to morphlogical scales in quasi-one-dimensional nanomaterials: A continuum model. International Journal of Mechanical Sciences, 2010 (In press).

  134. Zhou, L.G. and Huang, H.C., Are surfaces elastically softer or stiffer? Applied Physics Letters, 2004, 84: 1940–1942.

    Article  Google Scholar 

  135. Tang, Y.Z., Zheng, Z.J., Xia, M.F. and Bai, Y.L., Mechanisms underlying two kinds of surface effects on elastic constants. Acta Mechanica Solida Sinica, 2009, 22: 605–622.

    Article  Google Scholar 

  136. Tang, Y.Z., Zheng, Z.J., Xia, M.F. and Bai, Y.L., A unified guide to two opposite size effects in nano elastic materials. Chinese Physics Letters, 2009, 26: Art. 126201.

  137. Zheng, X.J. and Qiao, L., Electric field effects on Young’s modulus of nanowires. Acta Mechanica Sinica, 2009, 22: 511–523.

    Article  Google Scholar 

  138. He, L.H., Lim, C.W. and Wu, B.S., A continuum model for size-dependent deformation of elastic films of nano-scale thickness. International Journal of Solids and Structures, 2004, 41: 847–857.

    Article  MATH  Google Scholar 

  139. Lim, C.W. and He, L.H., Size-dependent nonlinear response of thin elastic films with nano-scale thickness. International Journal of Mechanical Sciences, 2004, 46: 1715–1726.

    Article  MATH  Google Scholar 

  140. Lu, P., He, L.H., Lee, H.P. and Lu, C., Thin plate theory including surface effects. International Journal of Solids and Structures, 2006, 43: 4631–4647.

    Article  MATH  Google Scholar 

  141. Huang, D.W., Size-dependent response of ultra-thin films with surface effects. International Journal of Solids and Structures, 2008, 45: 568–579.

    Article  MATH  Google Scholar 

  142. Wang, Z.Q. and Zhao, Y.P., Self-instability and bending behaviours of nanoplates. Acta Mechanica Solida Sinica, 2009, 22: 630–643.

    Article  MathSciNet  Google Scholar 

  143. Zhu, H.X., Wang, J.X. and Karihaloo, B.L., Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. Journal of Mechanics of Materials and Structures, 2009, 4: 589–604.

    Article  Google Scholar 

  144. Eremeyev, V.A., Altenbach, H. and Morozov, N.F., The influence of surface tension on the effective stiffness of nanosize plates. Doklady Physics, 2009, 54: 98–100.

    Article  MATH  Google Scholar 

  145. Altenbach, H., Eremeyev, V.A. and Morozov, N.F., Linear theory of shells taking into account surface stresses. Doklady Physics, 2009, 54: 531–535.

    Article  Google Scholar 

  146. Altenbach, H., Eremeyev, V.A. and Morozov, N.F., On equations of the linear theory of shells with surface stresses taken into account. Mechanics of Solids, 2010, 45: 331–342.

    Article  Google Scholar 

  147. Yang, Z.Y. and Zhao, Y.P., Size-dependent elastic properties of Ni nanofilms by molecular dynamic simulations. Surface Review and Letters, 2007, 14: 661–665.

    Article  Google Scholar 

  148. Guo, J.G., Zhou, L.J. and Zhao, Y.-P., Size-dependent elastic modulus and fracture toughness of the thin film with surface effects. Surface Review and Letters, 2008, 15: 599–603.

    Article  Google Scholar 

  149. Zhu, H.X., and Karihaloo, B.L., Size-dependent bending of thin metallic films. International Journal of Plasticity, 2008, 24: 991–1007.

    Article  MATH  Google Scholar 

  150. Lu, C.F., Chen, W.Q., and Lim, C.W., Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Composites Science and Technology, 2009, 69: 1124–1130.

    Article  Google Scholar 

  151. Pan, X.H., Huang, S.Q., Yu, S.W. and Feng, X.Q., Interfacial slippage effect on the surface instability of a thin elastic film under van der Waals force. Journal of Physics D: Applied Physics, 2009, 42: Art. 055302.

    Article  Google Scholar 

  152. Gurtin, M.E., Markenscoff, X. and Thurston, R.N., Effect of surface stress on the natural frequency of thin crystals. Applied Physics Letters, 1976, 29: 529–530.

    Article  Google Scholar 

  153. Ren, Q. and Zhao, Y.-P., Influence of surface stress on frequency of microcantilever-based biosensors. Microsystem Technologies, 2004, 10: 307–314.

    Article  Google Scholar 

  154. Lu, P., Lee, H.P., Lu, C.Lu. and O’Shea, S.J., Surface stress effects on the resonance properties of cantilever sensors. Physical Review B, 2005, 72: Art. 085405.

  155. Zhang, Y., Ren, Q. and Zhao, Y.-P., Modelling analysis of surface stress on a rectangular cantilever beam. Journal of Physics D: Applied Physics, 2004, 37: 2140–2145.

    Article  Google Scholar 

  156. Sadeghian, H., Goosen, J.F.L., Bossche, A. and van Keulen, F., Surface stress-induced change of overall elastic behaviour and self-bending of ultrathin cantilever plates. Applied Physics Letters, 2009, 94: Art. 231908.

    Article  Google Scholar 

  157. Huang, G.Y., Gao, W. and Yu, S.W., Model for the adsorption-induced change in resonance frequency of a cantilever. Applied Physics Letters, 2006, 89: Art. 043506.

    Article  Google Scholar 

  158. Zhang, J.Q., Yu, S.W. and Feng, X.Q., Theoretical analysis of resonance frequency change induced by adsorption. Journal of Physics D: Applied Physics, 2008, 41: Art. 125306.

    Article  Google Scholar 

  159. Zhang, J.Q., Yu, S.W., Feng, X.Q. and Wang, G.F., Theoretical analysis of adsorption-induced microcantilever bending. Journal of Applied Physics, 2008, 103: Art. 093506.

    Article  Google Scholar 

  160. Zhang, J.Q., Pan, X.H., Yu, S.W. and Feng, X.Q., Elastic analysis of physisorption-induced substrate deformation. Chinese Physics Letters, 2008, 26: 205–208.

    Article  Google Scholar 

  161. He, J. and Lilley, C.M., Surface stress effect on bending resonance of nanowires with different boundary conditions. Applied Physics Letters, 2008, 93: Art. 263108.

    Article  Google Scholar 

  162. He, J. and Lilley, C.M., The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Computional Mechanics, 2009, 44: 395–403.

    Article  MATH  Google Scholar 

  163. Yi, X. and Duan, H.L., Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors. Journal of the Mechanics and Physics of Solids, 2009, 57: 1254–1266.

    Article  MATH  Google Scholar 

  164. Park, H.S. and Klein, P.A., Surface Cauchy-Born analysis of surface stress effects on metallic nanowires. Physical Review B, 2007, 75: Art. 085408.

  165. Park, H.S., Surface stress effects on the resonant properties of silicon nanowires. Journal of Applied Physics, 2008, 103: Art. 123504.

  166. Park, H.S. and Klein, P.A., Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kine- matics and the impact of the residual surface stress. Journal of the Mechanics and Physics of Solids, 2008, 56: 3144–3166.

    Article  MATH  Google Scholar 

  167. Park, H.S., Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered. Nanotechnology, 2009, 20: Art. 115701.

    Article  Google Scholar 

  168. Yun, G. and Park, H.S., Surface stress effects on the bending properties of fcc metal nanowires. Physical Review B, 2009, 79: Art. 195421.

  169. Wang, Y., Weissmuller, J. and Duan, H.L., Tuning and monitoring of quantum dot growth by an in situ cantilever. Physical Review B, 2009, 79: Art. 045401.

  170. Chen, G.Y., Thundat, T., Wachter, E.A. and Warmack, R.J., Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. Journal of Applied Physics, 1995, 77: 3618–3622.

    Article  Google Scholar 

  171. Berger, R., Delamarche, E., Lang, H.P., Gerber, C., Gimzewski, J.K., Meyer, E. and Guntherodt, H.J., Surface stress in the self-assembly of alkanethiols on gold. Science, 1997, 276: 2021–2024.

    Article  Google Scholar 

  172. Wu, G.H., Datar, R.H., Hansen, K.M., Thundat, T., Cote, R.J. and Majumdar, A., Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology, 2001, 19: 856–860.

    Article  Google Scholar 

  173. McFarland, A.W., Poggi, M.A., Doyle, M.J., Bottomley, L.A. and Colton, J.S., Influence of surface stress on the resonance behavior of microcantilevers. Applied Physics Letters, 2005, 87: Art. 053505.

  174. Hwang, K.S., Eom, K., Lee, J.H., Chun, D.W., Cha, B.H., Yoon, D.S., Kim, T.S. and Park, J.H., Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical micro-cantilevers. Applied Physics Letters, 2006, 89: Art. 173905.

    Article  Google Scholar 

  175. Cahn, J.W. and Larche, F., Surface stress and the chemical equillibrium of small crystals II. Solid particles embedded in a solid matrix. Acta Metallurgica, 1982, 30: 51–56.

    Article  Google Scholar 

  176. Huo, B., Zheng, Q.S. and Huang, Y., A note on the effect of surface energy and void size to void growth. European Journal of Mechanics A/Solids, 1999, 18: 987–994.

    Article  MATH  Google Scholar 

  177. Suo, Z., Evolving material structures of small feature sizes. International Journal of Solids and Structures, 2000, 37: 367–378.

    Article  MATH  Google Scholar 

  178. Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society, 1957, A241: 376–396.

    Article  MathSciNet  MATH  Google Scholar 

  179. Eshelby, J.D., The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society, 1959, A252: 561–569.

    Article  MathSciNet  MATH  Google Scholar 

  180. Sharma, P., Ganti, S. and Bhate, N., Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 2003, 82: 535–537.

    Article  Google Scholar 

  181. Sharma, P. and Ganti, S., Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface. Journal of Applied Mechanics, 2004, 71: 663–671.

    Article  MATH  Google Scholar 

  182. Duan, H.L., Wang, J., Huang, Z.P. and Luo, Z.Y., Stress concentration tensors of inhomogeneities with interface effects. Mechanics of Materials, 2005, 37: 723–736.

    Article  Google Scholar 

  183. Duan, H.L., Wang, J., Huang, Z.P. and Karihaloo, B.L., Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society, 2005, A461: 3335–3353.

    Article  MathSciNet  MATH  Google Scholar 

  184. Eshelby, J.D., The continuum theory of lattice defects. Solid State Physics, 1956, 3: 79–144.

    Article  Google Scholar 

  185. Lim, C.W., Li, Z.R. and He, L.H., Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. International Journal of Solids and Structures, 2006, 43: 5055–5065.

    Article  MATH  Google Scholar 

  186. Li, Z.R., Lim, C.W. and He, L.H., Stress concentration around a nano-scale spherical cavity in elastic media: effect of surface stress. European Journal of Mechanics A/Solids, 2006, 25: 260–270.

    Article  MATH  Google Scholar 

  187. Duan, H.L., Jiao, Y., Yi, X., Huang, Z.P. and Wang, J., Solutions of inhomogeneity problems with graded shells and application to core-shell nanoparticles and composites. Journal of the Mechanics and Physics of Solids, 2006, 54: 1401–1425.

    Article  MathSciNet  MATH  Google Scholar 

  188. Sharma, P. and Wheeler, L.T., Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. Journal of Applied Mechanics, 2007, 74: 447–454

    Article  MathSciNet  MATH  Google Scholar 

  189. Benveniste, Y. and Miloh, T., Soft neutral elastic inhomogeneities with membrane-type interface conditions. Journal of Elasticity, 2007, 88: 87–111.

    Article  MathSciNet  MATH  Google Scholar 

  190. Hatami-Marbini, H. and Shodja, H.M., Effects of interface conditions on thermo-mechanical field of multiphase nano-fibers/particles. Journal of Thermal Stresses, 2009, 32: 1166–1180.

    Article  Google Scholar 

  191. Fisher, F.D. and Svoboda, J., Stresses in hollow nanoparticles. International Journal of Solids and Structures, 2010, 47: 2799–2805.

    Article  MATH  Google Scholar 

  192. He, L.H., Self-strain of solids with spherical nanovoids. Applied Physics Letters, 2006, 88: Art. 151909.

    Article  Google Scholar 

  193. He, L.H. and Li, Z.R., Impact of surface stress on stress concentration. International Journal of Solids and Structures, 2006, 43: 6208–6219.

    Article  MATH  Google Scholar 

  194. Mi, C.W. and Kouris, D.A., Nanoparticles under the influence of surface/interface elasticity. Journal of Mechanics of Materials and Structures, 2006, 1: 763–791.

    Article  Google Scholar 

  195. Wang, G.F. and Wang, T.J., Deformation around a nanosized elliptical hole with surface effect. Applied Physics Letters, 2006, 89: Art. 161901.

    Article  Google Scholar 

  196. Ou, Z.Y., Wang, G.F. and Wang, T.J., Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity. International Journal of Engineering Science, 2008, 46: 475–485.

    Article  Google Scholar 

  197. Ou, Z.Y., Wang, G.F. and Wang, T.J., Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings. European Journal of Mechanics A/Solids, 2009, 28:110–120.

    Article  MATH  Google Scholar 

  198. Ou, Z.Y., Wang, G.F. and Wang, T.J., An analytical solution for the elastic fields near spheroidal nano-inclusions. Acta Mechanica Sinica, 2009, 25: 821–830.

    Article  MathSciNet  MATH  Google Scholar 

  199. Tian, L. and Rajapakse, R.K.N.D., Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. Journal of Applied Mechanics, 2007, 74: 568–574.

    Article  MATH  Google Scholar 

  200. Tian, L. and Rajapakse, R.K.N.D., Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. International Journal of Solids and Structures, 2007, 44: 7988–8005.

    Article  MATH  Google Scholar 

  201. Luo, J. and Wang, X., On the anti-plane shear of an elliptic nano inhomogeneity. European Journal of Mechanics A/Solids, 2009, 28: 926–934.

    Article  MATH  Google Scholar 

  202. Avazmohammadi, R., Yang, F.Q. and Abbasion, S., Effect of interface stresses on the elastic deformation of an elastic half-plane containing an elastic inclusion. International Journal of Solids and Structures, 2009, 46: 2897–2906.

    Article  MATH  Google Scholar 

  203. Li, Q. and Chen, Y.H., Surface effect and size dependence on the energy release due to a nanosized hole expansion in plane elastic materials. Journal of Applied Mechanics, 2008, 75: Art. 061008.

    Article  Google Scholar 

  204. Hui, T. and Chen, Y.H., The M-integral analysis for a nano-inclusion in plane elastic materials under uniaxial or bi-axial loadings. Journal of Applied Mechanics, 2010, 77: Art. 021019.

    Article  Google Scholar 

  205. Hui, T. and Chen, Y.H., Two state M-integral analysis for a nano-inclusion in plane elastic materials under uni-axial or bi-axial loadings. Journal of Applied Mechanics, 2010, 77: Art. 024505.

  206. Gao, W., Yu, S.W. and Huang, G.Y., Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology, 2006, 17: 1118–1122.

    Article  Google Scholar 

  207. Gao, W. and Yu, S.W., Finite element characterization of the size-dependent mechanical behaviour of nanosystem — Formulation for plane strain and axisymmetric problem. In: Proc. of ECCM14, Budapest, June 6–8, 2010.

  208. Tian, L. and Rajapakse, R.K.N.D., Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Computational Materials Science, 2007, 41: 44–53.

    Article  Google Scholar 

  209. Chen, X.L., Ma, H.S., Liang, L.H. and Wei, Y.G., A surface energy model and application to mechanical behavior analysis of single crystals at sub-micron scale. Computational Materials Science, 2009, 46: 723–727.

    Article  Google Scholar 

  210. Mogilevskaya, S.G., Crouch, S.L. and Stolarski, H.K., Multiple interacting circular nano-inhomogeneities with surface/interface effects. Journal of the Mechanics and Physics of Solids, 2008, 56: 2298–2327.

    Article  MathSciNet  MATH  Google Scholar 

  211. Jammes, M., Mogilevskaya, S.G. and Crouch, S.L., Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes. Engineering Analysis with Boundary Elements, 2009, 33: 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  212. Mogilevskaya, S.G., Crouch, S.L., Ballarini, R., and Stolarski, H., Interaction between a crack and a circular inhomogeneity with interface stiffness and tension. International Journal of Fractures, 2009, 159: 191–207.

    Article  MATH  Google Scholar 

  213. Fang, Q.H. and Liu, Y.W., Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress. Scripta Materialia, 2006, 55: 99–102.

    Article  Google Scholar 

  214. Fang, Q.H. and Liu, Y.W., Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Materialia, 2006, 54: 4213–4220.

    Article  Google Scholar 

  215. Fang, Q.H., Li, B. and Liu, Y.W., Interaction between edge dislocations and a circular hole with surface stress. Physica Status Solidi B — Basic Solid State Physics, 2007, 244: 2576–2588.

    Article  Google Scholar 

  216. Fang, Q.H., Liu, Y.W. and Wen, P.H., Screw dislocations in a three-phase composite cylinder model with interface stress. Journal of Applied Mechanics, 2008, 75: 041019.

    Article  Google Scholar 

  217. Luo, J. and Xiao, Z.M., Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. International Journal of Engineering Science, 2009, 47: 883–893.

    Article  Google Scholar 

  218. Wang, G.F., Feng, X.Q. and Yu, S.W., Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion. Journal of Applied Physics, 2007, 102: Art. 043533.

    Article  Google Scholar 

  219. Wang, G.F., Wang, T.J. and Feng, X.Q., Surface effects on the diffraction of plane compressional waves by a nanosized circular hole. Applied Physics Letters, 2006, 89: 231923-1-3.

    Article  Google Scholar 

  220. Wang, G.F., Diffraction of shear waves by nanosized spherical cavity. Journal of Applied Physics, 2008, 103: Art. 053519.

    Article  Google Scholar 

  221. Wang, G.F., Multiple diffractions of plane compressional waves by two circular cylindrical holes with surface effects. Journal of Applied Physics, 2009, 105: Art. 013507.

    Article  Google Scholar 

  222. Ru, Y., Wang, G.F. and Wang, T.J., Diffractions of elastic waves and stress concentration near a cylindrical nano-inclusion incorporating surface effect. Journal of Vibration and Acoustics, 2009, 131: Art. 061011.

    Article  Google Scholar 

  223. Hasheminejad, S.M. and Avazmohammadi, R., Size-dependent effective dynamic properties of unidirectional nanocomposites with interface energy effects. Composites Science and Technology, 2009, 69: 2538–2546.

    Article  Google Scholar 

  224. Wu, X.-F. and Dzenis, Y.A., Wave propagation in nanofibers. Journal of Applied Physics, 2006, 100: Art. 124318.

    Article  Google Scholar 

  225. Griffith, A.A., The phenomena of rupture and flow in solids. Philosophical Transaction of the Royal Society A, 1920, 221: 163–198.

    Article  Google Scholar 

  226. Wu, C.H., The effect of surface stress on the configurational equilibrium of voids and cracks. Journal of the Mechanics and Physics of Solids, 1999, 47: 2469–2492.

    Article  MathSciNet  MATH  Google Scholar 

  227. Wang, G.F., Feng, X.Q., Wang, T.J. and Gao, W., Surface effects on the near-tip stresses for mode-I and mode-III cracks. Journal of Applied Mechanics, 2008, 75: Art. 011001.

    Article  Google Scholar 

  228. Fu, X.L., Wang, G.F. and Feng, X.Q., Surface effects on mode-I crack tip fields: A numerical study. Engineering Fracture Mechanics, 2010, 77:1048–1057.

    Article  Google Scholar 

  229. Fu, X.L., Wang, G.F. and Feng, X.Q., Surface effects on the near-tip stress fields of a mode-II crack. International Journal of Fracture, 2008, 151: 95–106.

    Article  MATH  Google Scholar 

  230. Kim, C.I., Schiavone, P. and Ru, C.Q., The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. Journal of Applied Mechanics, 2010, 77: Art. 021011.

    Article  Google Scholar 

  231. Weissmuller, J., Viswanath, R.N., Kramer, D., Zimmer, P., Wurschum, R. and Gleiter, H., Charge-induced reversible strain in a metal. Science, 2003, 300: 312–315.

    Article  Google Scholar 

  232. Kramer, D., Viswanath, R.N. and Weissmu1ller, J., Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Letters, 2004, 4: 793–796.

    Article  Google Scholar 

  233. Yang, F.Q., Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations. Journal of Applied Physics, 2004, 95: 3516–3520.

    Article  Google Scholar 

  234. Yang, F.Q., Effect of interfacial stresses on the elastic behavior of nanocomposite materials. Journal of Applied Physics, 2006, 99: 054306.

    Article  Google Scholar 

  235. Hashin, Z., The elastic moduli of heterogeneous materials. Journal of Applied Mechanics, 1962, 29: 143–150.

    Article  MathSciNet  MATH  Google Scholar 

  236. Duan, H.L., Wang, J., Huang, Z.P. and Karihaloo, B.L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 2005, 53: 1574–1596.

    Article  MathSciNet  MATH  Google Scholar 

  237. Mori, T. and Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 1973, 21: 571–574.

    Article  Google Scholar 

  238. Christensen, R.M. and Lo, K.H., Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1979, 27: 315–330.

    Article  MATH  Google Scholar 

  239. Masuda, H. and Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268: 1466–1468.

    Article  Google Scholar 

  240. Martin, C.R. and Siwy, Z., Molecular filters-pores within pores. Nature Materials, 2004, 3: 284–285.

    Article  Google Scholar 

  241. Duan, H.L., Wang, J., Karihaloo, B.L. and Huang, Z.P., Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Materialia, 2006, 54: 2983–2990.

    Article  Google Scholar 

  242. Eremeyev, V.A. and Morozov, N.F., The effective stiffness of a nanoporous rod. Doklady Physics, 2010, 55: 279–282.

    Article  MATH  Google Scholar 

  243. Duan, H.L., Yi, X., Huang, Z.P. and Wang, J., A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part I — theoretical framework. Mechanics of Materials, 2007, 39: 81–93.

    Article  Google Scholar 

  244. Huang, Y., Hu, K.X., Wei, X. and Chandra, A., A generalized self-consistent mechanics method for composite materials with multiphase inclusions. Journal of the Mechanics and Physics of Solids, 1994, 42: 491–504.

    Article  MATH  Google Scholar 

  245. Chen, T. and Dvorak, G.J., Fiberous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli. Applied Physics Letters, 2006, 88: Art. 211912.

    Article  Google Scholar 

  246. Levin, V.M., On the coefficients of thermal expansion of heterogeneous materials. Mechanics of Solids, 1967, 2: 58–61.

    Google Scholar 

  247. Hill, R., Theory of mechanical properties of fibre-strengthened materials — I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 1964, 12: 199–212.

    Article  MathSciNet  Google Scholar 

  248. Chen, T., Dvorak, G.J. and Yu, C.C., Solids containing spherical nano-inclusions with interface stresses: Effective properties and thermal-mechanical connections. International Journal of Solids and Structures, 2007, 44: 941–955.

    Article  MATH  Google Scholar 

  249. Chen, T., Dvorak, G.J. and Yu, C.C., Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mechanica, 2007, 188: 39–54.

    Article  MATH  Google Scholar 

  250. Mogilevskaya, S.G., Crouch, S.L., La Grotta, A. and Stolarski, H.K., The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nanocomposites. Composites Science and Technology, 2010, 70: 427–434.

    Article  Google Scholar 

  251. Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K. and Benusiglio, A., Equivalent inhomogeneity method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects. International Journal of Solids and Structures, 2010b, 47: 407–418.

    Article  MATH  Google Scholar 

  252. Murdoch, A.I., Thermodynamical theory of elastic-material interfaces. The Quarterly Journal of Mechanics and Applied Mathematics, 1976, 29: 245–275.

    Article  MathSciNet  MATH  Google Scholar 

  253. Murdoch, A.I., Some fundamental aspects of surface modelling. Journal of Elasticity, 2005, 80: 33–52.

    Article  MathSciNet  MATH  Google Scholar 

  254. Duan, H.L. and Karihaloo, B.L., Thermo-elastic properties of heterogeneous materials with imperfect interfaces: Generalized Levin’s formula and Hill’s connections. Journal of the Mechanics and Physics of Solids, 2007, 55: 1036–1052.

    Article  MathSciNet  MATH  Google Scholar 

  255. Le Quang, H. and He, Q.C., Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases. Journal of the Mechanics and Physics of Solids, 2007, 55: 1889–1921.

    Article  MathSciNet  MATH  Google Scholar 

  256. He, Q.C. and Benveniste, Y., Exactly solvable spherically anisotropic thermoelastic microstructures. Journal of the Mechanics and Physics of Solids, 2004, 52: 2661–2682.

    Article  MathSciNet  MATH  Google Scholar 

  257. Le Quang, H. and He, Q.C., Estimation of the effective thermoelastic moduli of firous nanocomposites with cylindrically anisotropic phases. Archive of Applied Mechanics, 2009, 79: 225–248.

    Article  MATH  Google Scholar 

  258. Le Quang, H. and He, Q.C., Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces. Mechanics of Materials, 2008, 40: 865–884.

    Article  Google Scholar 

  259. Brisard, S., Dormieux, L. and Kondo, D., Hashin-Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects. Computational Materials Science, 2010, 48: 589–596.

    Article  Google Scholar 

  260. Yvonnet, J., Le Quang, H. and He, Q.C., An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Computational Mechanics, 2008, 42: 119–131.

    Article  MathSciNet  MATH  Google Scholar 

  261. Feng, X.Q., Xia, R., Li, X. and Li, B., Surface effects on the elastic modulus of nanoporous materials. Applied Physics Letters, 2009, 94: Art. 011916.

    Article  Google Scholar 

  262. Pan, E., Wang, X. and Wang, R., Enhancement of magnetoelectric effect in multiferroic nanocomposites via size-dependent material properties. Applied Physics Letters, 2009, 95: Art. 181904.

    Article  Google Scholar 

  263. Yang, F.Q., Size effect on the effective bulk modulus of nanocomposites with core-shell nanospherical inclusions. Materials Science and Engineering A, 2010, 527: 3913–3917.

    Article  Google Scholar 

  264. Zhu, H.X., Size-dependent elastic properties of micro- and nano-honeycombs. Journal of the Mechanics and Physics of Solids, 2010, 58: 696–709.

    Article  MathSciNet  MATH  Google Scholar 

  265. Zhang, W.X. and Wang, T.J., Effect of surface energy on the yield strength of nanoporous materials. Applied Physics Letters, 2007, 90: Art. 063104.

    Article  Google Scholar 

  266. Zhang, W.X., Wang, T.J. and Chen, X., Effect of surfface stress on the asymmetric yield strength of nanowires. Journal of Applied Physics, 2008, 103: Art. 123527.

    Article  Google Scholar 

  267. Zhang, W.X., Wang, T.J. and Chen, X., Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. International Journal of Plasticity, 2010, 26: 957–975.

    Article  MATH  Google Scholar 

  268. Chen, H., Liu, X.N. and Hu, G.K., Overall plasticity of micropolar composites with interface effect. Mechanics of Materials, 2008, 40: 721–728.

    Article  Google Scholar 

  269. Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: Part I, yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 1977, 99: 2–15.

    Article  Google Scholar 

  270. Dormieux, L. and Kondo, D., An extension of Gurson model incorporating interface stresses effects. International Journal of Engineering Science, 2010, 48: 575–581.

    Article  MathSciNet  MATH  Google Scholar 

  271. Volkert, C.A., Lilleodden, E.T., Kramer, D. and Weissmueller, J., Approaching the theoretical strength in nanoporous Au. Applied Physics Letters, 2006, 89: Art. 061920.

  272. Jin, H.J., Kramer, D., Ivanisenko, Y. and Weissmuller, J., Macroscopically strong nanoporous Pt prepared by dealloying. Advanced Engineering Materials, 2007, 9: 849–854.

    Article  Google Scholar 

  273. Biener, J., Hodge, A.M. Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V. and Abraham, F.F., Size effects on the mechanical behavior of nanoporous Au. Nano Letters, 2006, 6: 2379–2382.

    Article  Google Scholar 

  274. Hakamada, M. and Mabuchi, M., Mechanical strength of nanoporous gold fabricated by dealloying. Scripta Materialia, 2007, 56: 1003–1006.

    Article  Google Scholar 

  275. Smetanin, M., Viswanath, R.N., Kramer, D., Beckmann, D., Koch, T., Kibler, L.A., Kolb, D.M. and Weissmuller, J., Surface stress-charge response of a (111)-textured gold electrode under conditions of weak ion adsorption. Langmuir, 2008, 24: 8561–8567.

    Article  Google Scholar 

  276. Duan, H.L., Weissmuller, J. and Wang, Y., Instabilities of core shell heterostructured cylinders due to diffusions and epitaxy: Spheroidization and blossom of nanowires. Journal of the Mechanics and Physics of Solids, 2008, 56: 1831–1851.

    Article  MathSciNet  MATH  Google Scholar 

  277. Weissmuller, J. and Duan, H.L., Cantilever bending with rough surfaces. Physical Review Letters, 2008, 101: Art. 146102.

  278. Blanco-Rey, M., Pratt, S.J. and Jenkins, S.J., Surface stress of stepped chiral metal surfaces. Physical Review Letters, 2009, 102: Art. 026102.

  279. Huang, G.Y. and Yu, S.W., Effect of surface elasticity on the interaction between steps. Journal of Applied Mechanics, 2007, 74: 821–823.

    Article  Google Scholar 

  280. Qiao, L. and Zheng, X.J., Elastic property of fcc metal nanowires via an atomic-scale analysis. Applied Physics Letters, 2008, 92: Art. 231908.

    Article  Google Scholar 

  281. Duan, H.L., Xue, Y.H. and Yi, X., Vibration of cantilevers with rough surfaces. Acta Mechanica Solida Sinica, 2009, 22: 550–554.

    Article  Google Scholar 

  282. Wang, Y., Weissmuller, J. and Duan, H.L., Mechanics of corrugated surfaces. Journal of the Mechanics and Physics of Solids, 2010, 58: 1552–1566.

    Article  MathSciNet  MATH  Google Scholar 

  283. Duan, H.L., Surface-enhanced cantilever sensors with nano-porous films. Acta Mechanica Solida Sinica, 2010, 23: 1–12.

    Article  Google Scholar 

  284. Guo, W.L., Xie, H.M. and Zheng, Q.S., Current trends of micro- and nanomechanics. Acta Mechanica Solida Sinica, 2009, 22: I–III.

    Article  Google Scholar 

  285. Shao, L.-H., Jin, H.-J., Viswanath, R.N. and Weissmuller, J., Different measures for the capillarity-driven deformation of a nanoporous metal. Europhysics Letters, 2010, 89: Art. 66001.

    Article  Google Scholar 

  286. Jiang, Q., Zhao, D.S. and Zhao, M., Size-dependent interface energy and related interface stress. Acta Materialia, 2001, 49: 3143–3147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Huang, Z., Duan, H. et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011). https://doi.org/10.1016/S0894-9166(11)60009-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60009-8

Key words

Navigation