Skip to main content
Log in

Cell and molecular biomechanics: perspectives and challenges

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

As an intriguing interdisciplinary research field, cell and molecular biomechanics is at the cutting edge of mechanics in general and biomechanics in particular. It has the potential to provide a quantitative understanding of how forces and deformation at tissue, cellular and molecular levels affect human health and disease. In this article, we review the recent advances in cell and molecular biomechanics, examine the available computational and experimental tools, and discuss important issues including protein deformation in mechanotransduction, cell deformation and constitutive behavior, cell adhesion and migration, and the associated models and theories. The opportunities and challenges in cell and molecular biomechanics are also discussed. We hope to provide readers a clear picture of the current status of this field, and to stimulate a broader interest in the applied mechanics community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayak, G.D., Ratnayaka, H.S., Goodyear, R.J. and Richardson, G.P., Development of the hair bundle and mechanotransduction. The International Journal of Developmental Biology, 2007, 51: 597–608.

    Article  Google Scholar 

  2. Zhu, C., Bao, G. and Wang, N., Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering, 2000, 2: 189–226.

    Article  Google Scholar 

  3. Davies, P.F. and Tripathi, S.C., Mechanical stress mechanisms and the cell. An endothelial paradigm. Circulation Research, 1993, 72: 239–245.

    Article  Google Scholar 

  4. Lehoux, S., Castier, Y. and Tedgui, A., Molecular mechanisms of the vascular responses to haemodynamic forces. Journal of Internal Medicine, 2006, 259: 381–392.

    Article  Google Scholar 

  5. Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E., Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126: 677–689.

    Article  Google Scholar 

  6. Kamm, R.D. and Kaazempur-Mofrad, M.R., On the molecular basis for mechanotransduction. Mechanics & chemistry of biosystems, 2004, 1: 201–209.

    Google Scholar 

  7. Vogel, V. and Sheetz, M., Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 2006, 7: 265–275.

    Article  Google Scholar 

  8. Mofrad, M.R.K. and Kamm, R.D., Cellular Mechanotransduction, New York: Cambridge University Press, 2010.

    Google Scholar 

  9. Gautam, M., Gojova, A. and Barakat, A.I., Flow-activated ion channels in vascular endothelium. Cell Biochemistry and Biophysics, 2006, 46: 277–284.

    Article  Google Scholar 

  10. Suchyna, T. and Sachs, F., Mechanical and electrical properties of membranes from dystrophic and normal mouse muscle. Journal of Physiology, 2007, 581: 369–387.

    Article  Google Scholar 

  11. Hudspeth, A.J., Choe, Y., Mehta, A.D. and Martin, P., Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proceedings of the National Academy of Sciences of USA, 2000, 97: 11765–11772.

    Article  Google Scholar 

  12. Hytonen, V.P. and Vogel, V., How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism. PLoS Computational Biology, 2008, 4: e24.

    Article  Google Scholar 

  13. Lee, J.H., Huh, Y.M., Jun, Y.W., Seo, J.W., Jang, J.T., Song, H.T., Kim, S., Cho, E.J., Yoon, H.G., Suh, J.S. and Cheon, J., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2007, 13: 95–99.

    Article  Google Scholar 

  14. Mofrad, M.R., Golji, J., Abdul Rahim, N.A. and Kamm, R.D., Force-induced unfolding of the focal adhesion targeting domain and the influence of paxillin binding. Mechanics & Chemistry of Biosystems, 2004, 1: 253–265.

    Google Scholar 

  15. Kanchanawong, P., Shtengel, G., Pasapera, A.M., Ramko, E.B., Davidson, M.W., Hess, H.F. and Waterman, C.M., Nanoscale architecture of integrin-based cell adhesions. Nature, 2010, 468: 580–584.

    Article  Google Scholar 

  16. Grashoff, C., Hoffman, B.D., Brenner, M.D., Zhou, R., Parsons, M., Yang, M.T., McLean, M.A., Sligar, S.G., Chen, C.S., Ha, T. and Schwartz, M.A., Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 2010, 466: 263–266.

    Article  Google Scholar 

  17. Ingber, D.E., Cellular mechanotransduction: putting all the pieces together again. The FASEB Journal, 2006, 20: 811–827.

    Article  Google Scholar 

  18. Howard, J., Mechanical signaling in networks of motor and cytoskeletal proteins. Annual Review of Biophysics, 2009, 38: 217–234.

    Article  Google Scholar 

  19. Bao, G. and Suresh, S., Cell and molecular mechanics of biological materials. Nature Materials, 2003, 2: 715–726.

    Article  Google Scholar 

  20. Bao, G., Mechanics of biomolecules. Journal of the Mechanics and Physics of Solids, 2002, 50: 2237–2274.

    Article  MathSciNet  MATH  Google Scholar 

  21. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D., Molecular Biology of the Cell. Garland Publishing, New York, 2002.

    Google Scholar 

  22. Voet, D. and Voet, J.G., Biochemistry, John Wiley & Sons, New York, 1995.

    Google Scholar 

  23. Creighton, T.E., Proteins, W.H. Freeman and Company, New York, 1993.

    Google Scholar 

  24. McCammon, J.A., Gelin, B.R., Karplus, M. and Wolynes, P.G., The hinge-bending mode in lysozyme. Nature, 1976, 262: 325–326.

    Article  Google Scholar 

  25. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. and Gaub, H., Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 1997, 276: 1109–1112.

    Article  Google Scholar 

  26. Kellermayer, M.S.Z., Smith, S.B., Granzier, H.L. and Bustamante, C., Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science, 1997, 276: 1112–1116.

    Article  Google Scholar 

  27. Tskhovrebova, L., Trinnick, J., Sleep, J.A. and Simmons, R.M., Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature, 1997, 387: 308–312.

    Article  Google Scholar 

  28. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. and Fernandez, J.M., The molecular elasticity of the extracellular matrix protein tenascin. Nature, 1998, 393: 181–185.

    Article  Google Scholar 

  29. Krammer, A., Lu, H., Isralewitz, B., Schulten, K. and Vogel, V., Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proceedings of the National Academy of Sciences of USA, 1999, 96: 1351–1356.

    Article  Google Scholar 

  30. Ohashi, T., Kiehart, D.P. and Ericson, H., Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proceedings of the National Academy of Sciences of USA, 1999, 96: 2153–2158.

    Article  Google Scholar 

  31. Craig, D., Krammer, A., Schulten, K. and Vogel, V., Comparison of the early stages of forced unfolding for fibronectin type III modules. Proceedings of the National Academy of Sciences of USA, 2001, 98: 5590–5595.

    Article  Google Scholar 

  32. Vogel, V., Thomas, W.E., Craig, D.W., Krammer, A. and Baneyx, G., Structural insights into the mechanical regulation of molecular recognition sites. Trends in Biotechnology, 2001, 19: 416–423.

    Article  Google Scholar 

  33. Puklin-Faucher, E., Gao, M., Schulten, K. and Vogel, V., How the headpiece hinge angle is opened: New insights into the dynamics of integrin activation. Journal of Cell Biology, 2006, 175: 349–360.

    Article  Google Scholar 

  34. Vogel, V. and Sheetz, M.P., Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Current Opinion in Cell Biology, 2009, 21: 38–46.

    Article  Google Scholar 

  35. Puklin-Faucher, E. and Vogel, V., Integrin activation dynamics between the RGD-binding site and the headpiece hinge. Journal of Biological Chemistry, 2009, 284: 36557–36568.

    Article  Google Scholar 

  36. Kong, F., García, A.J., Mould, A.P., Humphries, M.J. and Zhu, C., Demonstration of catch bonds between an integrin and its ligand. Journal of Cell Biology, 2009, 185: 1275–1284.

    Article  Google Scholar 

  37. Ruggeri, Z.M., Von Willebrand factor. Current Opinion in Hematology, 2003, 10: 142–149.

    Article  Google Scholar 

  38. Johnson, C.P., Tang, H.Y., Carag, C., Speicher, D.W. and Discher, D.E, Forced unfolding of proteins within cells. Science, 2007, 317: 663–666.

    Article  Google Scholar 

  39. Soto, C., Protein misfolding and disease; protein refolding and therapy. FEBS Letters, 2001, 498: 204–207.

    Article  Google Scholar 

  40. Fu, J., Wang, Y.K., Yang, M.T., Desai, R.A., Yu, X., Liu, Z. and Chen, C.S., Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods, 2010, 7: 733–736.

    Article  Google Scholar 

  41. Galbraith, C.G. and Sheetz, M.P., A micromachined device provides a new bend on fibroblast traction forces. Proceedings of the National Academy of Sciences of USA, 1997, 94: 9114–9118.

    Article  Google Scholar 

  42. Tan, J.L., Tien, J., Pirone, D.M., Gray, D.S., Bhadriraju, K. and Chen, C.S., Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proceedings of the National Academy of Sciences of USA, 2003, 100: 1484–1489.

    Article  Google Scholar 

  43. Legant, W.R., Miller, J.S., Blakely, B.L., Cohen, D.M., Genin, G.M. and Chen, C.S., Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nature Methods, 2010, 7: 969–971.

    Article  Google Scholar 

  44. McGarry, J.P., Murphy, B.P. and McHugh, P.E., Computational mechanics modelling of cell-substrate contact during cyclic substrate deformation. Journal of the Mechanics and Physics of Solids, 2005, 53: 2597–2637.

    Article  MATH  Google Scholar 

  45. Chen, S. and Gao, H., Non-slipping adhesive contact of an elastic cylinder on stretched substrates. Proceedings of the Royal Society A, 2006, 462: 211–228.

    Article  MathSciNet  MATH  Google Scholar 

  46. Guilak, F. and Mow, V.C., The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. Journal of Biomechanics, 2000, 33: 1663–1673.

    Article  Google Scholar 

  47. Leipzig, N.D. and Athanasiou, K.A., Unconfined creep compression of chondrocytes. Journal of Biomechanics, 2005, 38: 77–85.

    Article  Google Scholar 

  48. Caille, N., Thoumine, O., Tardy, Y. and Meister, J.J., Contribution of the nucleus to the mechanical properties of endothelial cells. Journal of Biomechanics, 2002, 35: 177–187.

    Article  Google Scholar 

  49. Satcher, R.L. and Dewey, C.F., Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophysical Journal, 1996, 71: 109–118.

    Article  Google Scholar 

  50. Stamenovic, D. and Ingber, D.E., Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology, 2002, 1: 95–108.

    Article  Google Scholar 

  51. Ingber, D.E., Cellular tensegrity — Defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science, 1993, 104: 613–627.

    Google Scholar 

  52. Ingber, D.E. and Tensegrity, I., Cell structure and hierarchical systems biology. Journal of Cell Science, 2003, 116: 1157–1173.

    Article  Google Scholar 

  53. Canadas, P., Wendling-Mansuy, S. and Isabey, D., Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics. Journal of Biomechanical Engineering — Transactions of the ASME, 2006, 128: 487–495.

    Article  Google Scholar 

  54. Sultan, C., Stamenovic, D. and Ingber, D.E., A computational tensegrity model predicts dynamic rheological behaviors in living cells. Annals of Biomedical Engineering, 2004, 32: 520–530.

    Article  Google Scholar 

  55. Maurin, B., Canadas, P., Baudriller, H., Montcourrier, P. and Bettache, N., Mechanical model of cytoskeleton structuration during cell adhesion and spreading. Journal of Biomechanics, 2008, 41: 2036–2041.

    Article  Google Scholar 

  56. Luo, Y., Xu, X., Lele, T., Kumar, S. and Ingber, D.E., A multi-modular tensegrity model of an actin stress fiber. Journal of Biomechanics, 2008, 41: 2379–2387.

    Article  Google Scholar 

  57. Na, S., Meininger, G.A. and Humphrey, J.D., A theoretical model for F-actin remodeling in vascular smooth muscle cells subjected to cyclic stretch. Journal of Theoretical Biology, 2007, 246: 87–99.

    Article  MathSciNet  Google Scholar 

  58. Moreo, P., Garcia-Aznar, J.M. and Doblar, M., Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomaterialia, 2008, 4: 613–621.

    Article  Google Scholar 

  59. Besser, A. and Schwarz, U.S., Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction. New Journal of Physics, 2007, 9: 425.

    Article  Google Scholar 

  60. Matthew, R.S. and Ben, O.S., Kinetics of stress fibers. New Journal of Physics, 2008(2): 025002.

    Google Scholar 

  61. Deshpande, V.S., McMeeking, R.M. and Evans, A.G., A bio-chemo-mechanical model for cell contractility. Proceedings of the National Academy of Sciences of USA, 2006, 103: 14015–14020.

    Article  Google Scholar 

  62. Wei, Z., Deshpande, V.S., McMeeking, R.M. and Evans, A.G., Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. Journal of Biomechanical Engineering, 2008, 130 (3): 031009–9.

    Article  Google Scholar 

  63. Pathak, A., Deshpande, V.S., McMeeking, R.M. and Evans, A.G., The simulation of stress fibre and focal adhesion development in cells on patterned substrates. Journal of The Royal Society Interface, 2008, 5: 507–524.

    Article  Google Scholar 

  64. Kim, J.S. and Sun, S.X., Continuum modeling of forces in growing viscoelastic cytoskeletal networks. Journal of Theoretical Biology, 2009, 256: 596–606.

    Article  MathSciNet  Google Scholar 

  65. N’Dri, N.A., Shyy, W. and Tran-Soy-Tay, R., Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophysical Journal, 2003, 85: 2273–2286.

    Article  Google Scholar 

  66. Rubinstein, B., Jacobson, K. and Mogilner, A., Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Modeling & Simulation, 2005, 3: 413–439.

    Article  MathSciNet  MATH  Google Scholar 

  67. Milan, J.L., Wendling-Mansuy, S., Jean, M. and Chabrand, P., Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation. Biomechanics and Modeling in Mechanobiology, 2007, 6: 373–390.

    Article  Google Scholar 

  68. Michael, C.F., Amit, B., Mariana, B.G. and Peter, J.B., Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Annals of Biomedical Engineering, 2007, 35: 208–223.

    Article  Google Scholar 

  69. Fernandez, P., Pullarkat, P.A. and Ott, A., A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophysical Journal, 2006, 90: 3796–3805.

    Article  Google Scholar 

  70. Kasza, K.E., Rowat, A.C., Liu, J., Angelini, T.E., Brangwynne, C.P., Koenderink, G.H. and Weitz, D.A., The cell as a material. Current Opinion in Cell Biology, 2007, 19: 101–107.

    Article  Google Scholar 

  71. Jiang, G.Y., Huang, A.H., Cai, Y.F., Tanase, M. and Sheetz, M.P., Rigidity sensing at the leading edge through alpha(v)beta(3) integrins and RPTP alpha. Biophysical Journal, 2006, 90: 1804–1809.

    Article  Google Scholar 

  72. Darling, E.M., Zauscher, S. and Guilak, F., Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis and Cartilage, 2006, 14: 571–579.

    Article  Google Scholar 

  73. Mathur, A.B., Inge, E.W., Reichert, W.M. and Truskey, G.A., Examination of the effect of stress on streptavidin-biotin/integrin-fibronectin bonds at the cell-substrate interface with the AFM-TIRFM. Abstracts of Papers of the American Chemical Society, 2001, 221: U347–U348.

    Google Scholar 

  74. Titushkin, I. and Cho, M., Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophysical Journal, 2007, 93: 3693–3702.

    Article  Google Scholar 

  75. Gardel M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P. and Weitz, D.A., Elastic behavior of cross-linked and bundled actin networks. Science, 2004, 304: 1301–1305.

    Article  Google Scholar 

  76. Palmer, J.S. and Boyce, M.C., Constitutive modeling of the stress-strain behavior of F-actin filament networks. Acta Biomaterialia, 2008, 4: 597–612.

    Article  Google Scholar 

  77. Lu, L., Oswald, S.J., Ngu, H. and Yin, F.C.P., Mechanical properties of actin stress fibers in living cells. Biophysical Journal, 2008, 95: 6060–6071.

    Article  Google Scholar 

  78. Stamenovic, D., Rosenblatt, N., Montoya-Zavala, M., Matthews, B.D., Hu, S., Suki, B., Wang, N. and Ingber, D.E., Rheological behavior of living cells is timescale-dependent. Biophysical Journal, 2007, 93: L39–41.

    Article  Google Scholar 

  79. Deng, L.H., Trepat, X., Butler, J.P., Millet, E., Morgan, K.G., Weitz, D.A. and Fredberg, J.J., Fast and slow dynamics of the cytoskeleton. Nature Materials, 2006, 5: 636–640.

    Article  Google Scholar 

  80. Chowdhury, F., Na, S., Collin, O., Tay, B., Li, F., Tanaka, T., Leckband, D.E. and Wang, N., Is cell rheology governed by nonequilibrium-to-equilibrium transition of noncovalent bonds? Biophysical Journal, 2008, 95: 5719–5727.

    Article  Google Scholar 

  81. Jaasma, M.J., Jackson, W.M., Tang, R.Y. and Keaveny, T.M., Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. Journal of Biomechanics, 2007, 40: 1938–1945.

    Article  Google Scholar 

  82. Li, Q.S., Lee, G.Y.H., Ong, C.N. and Lim, C.T., AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications, 2008, 374: 609–613.

    Article  Google Scholar 

  83. Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z. and Hrynkiewicz, A.Z., Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal with Biophysics Letters, 1999, 28: 312–316.

    Article  Google Scholar 

  84. Suresh, S., Biomechanics and biophysics of cancer cells. Acta Biomaterialia, 2007, 3: 413–438.

    Article  MathSciNet  Google Scholar 

  85. Ward, K.A., Li, W.I., Zimmer, S. and Davis, T., Viscoelastic properties of transformed-cells-role in tumor-cell progression and metastasis formation. Biorheology, 1991, 28: 301–313.

    Article  Google Scholar 

  86. Geiger, B. and Bershadsky, A., Assembly and mechanosensory function of focal contacts. Current Opinion in Cell Biology, 2001, 13: 584–592.

    Article  Google Scholar 

  87. Wayner, E.A., Orlando, R.A. and Cheresh, D.A., Integrins alpha v beta 3 and alpha v beta 5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface. Journal of Cell Biology, 1991, 113: 919–929.

    Article  Google Scholar 

  88. Zhu, C., Kinetics and mechanics of cell adhesion. Journal of Biomechanics, 2000, 33: 23–33.

    Article  Google Scholar 

  89. Evans, E.A., Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophysical Journal, 1985, 48: 185–192.

    Article  Google Scholar 

  90. Evans, E.A., Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges. Biophysical Journal, 1985, 48: 175–183.

    Article  Google Scholar 

  91. Ward, M.D. and Hammer, D.A., A theoretical analysis for the effect of focal contact formation on cellsubstrate attachment strength. Biophysical Journal, 1993, 64: 936–959.

    Article  Google Scholar 

  92. Ward, M.D., Dembo, M. and Hammer, D.A., Kinetics of cell detachment: peeling of discrete receptor clusters. Biophysical Journal, 1994, 67: 2522–2534.

    Article  Google Scholar 

  93. Kong, D., Ji, B. and Dai, L., Nonlinear mechanical modeling of cell adhesion. Journal of Theoretical Biology, 2008, 250: 75–84.

    Article  MathSciNet  MATH  Google Scholar 

  94. Chen, B. and Gao, H.J., Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton. Biophysical Journal, 2010, 98: 2154–2162.

    Article  Google Scholar 

  95. Marshall, B.T., Long, M., Piper, J.W., Yago, T., McEver, R.P. and Zhu, C., Direct observation of catch bonds involving cell-adhesion molecules. Nature, 2003, 423: 190–193.

    Article  Google Scholar 

  96. Bershadsky, A.D., Balaban, N, Q. and Geiger, B., Adhesion-dependent cell mechanosensitivity. Annual Review of Cell and Developmental Biology, 2003, 19: 677–695.

    Article  Google Scholar 

  97. Riveline, D., Zamir, E., Balaban, N.Q., Schwarz, U.S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B. and Bershadsky, A.D., Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and rock-independent mechanism. Journal of Cell Biology, 2001, 153: 1175–1186.

    Article  Google Scholar 

  98. Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S.A., Bershadsky, A., Addadi, L. and Geiger, B., Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 2001, 3: 466–472.

    Article  Google Scholar 

  99. Buck, R.C., Reorientation response of cells to repeated stretch and recoil of the substratum. Experimental Cell Research, 1980, 127: 470–474.

    Article  Google Scholar 

  100. Dartsch, P. and Hammerle, H., Orientation response of arterial smooth muscle cells to mechanical stimulation. European Journal of Cell Biology, 1986, 41: 339–346.

    Google Scholar 

  101. Jungbauer, S., Gao, H., Spatz, J.P. and Kemkemer, R., Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophysical Journal, 2008, 95: 3470–3478.

    Article  Google Scholar 

  102. Kaunas, R., Nguyen, P., Usami, S. and Chien, S., From the cover: cooperative effects of Rho and mechanical stretch on stress fiber organization. Proceedings of the National Academy of Sciences of USA, 2005, 102: 15895–15900.

    Article  Google Scholar 

  103. Moretti, M., Prina-Mello, A., Reid, A.J., Barron, V. and Prendergast, P.J., Endothelial cell alignment on cyclically-stretched silicone surfaces. Journal of Materials Science — Materials in Medicine, 2004, 15: 1159–1164.

    Article  Google Scholar 

  104. Neidlinger-Wilke, C., Grood, E.S., Wang, J.H.C., Brand, R.A. and Claes, L., Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. Journal of Orthopaedic Research, 2001, 19: 286–293.

    Article  Google Scholar 

  105. Neidlinger-Wilke, C., Wilke, H.-J. and Claes, L., Cyclic stretching of human osteoblasts affects proliferation and metabolism: A new experimental method and its application. Journal of Orthopaedic Research, 2005, 12: 70–78.

    Article  Google Scholar 

  106. Wang, H.C., Ip, W., Boissy, R. and Grood, E.S., Cell orientation response to cyclically deformed substrates: Experimental validation of a cell model. Journal of Biomechanics, 1995, 28: 1543–1552.

    Article  Google Scholar 

  107. Nicolas, A., Geiger, B. and Safran, S.A., Cell mechanosensitivity controls the anisotropy of focal adhesions. Proceedings of the National Academy of Sciences of USA, 2004, 101: 12520–12525.

    Article  Google Scholar 

  108. Nicolas, A. and Safran, S.A., Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophysical Journal, 2006, 91: 61–73.

    Article  Google Scholar 

  109. Nicolas, A., Besser, A. and Safran, S.A., Dynamics of cellular focal adhesions on deformable substrates: Consequences for cell force microscopy. Biophysical Journal, 2008, 95: 527–539.

    Article  Google Scholar 

  110. Shemesh, T., Geiger, B., Bershadsky, A.D. and Kozlov, M.M., Focal adhesions as mechanosensors: A physical mechanism. Proceedings of the National Academy of Sciences of USA, 2005, 102: 12383–12388.

    Article  Google Scholar 

  111. De, R., Zemel, A. and Safran, S.A., Dynamics of cell orientation. Nature Physics, 2007, 3: 655–659.

    Article  Google Scholar 

  112. De, R. and Safran, S.A., Dynamical theory of active cellular response to external stress. Physical Review E, 2008, 78 (3): 031923–18.

    Article  Google Scholar 

  113. Qian, J., Wang, J. and Gao, H., Lifetime and strength of adhesive molecular bond clusters between elastic media. Langmuir, 2008, 24: 1262–1270.

    Article  Google Scholar 

  114. Wang, J. and Gao, H., Clustering instability in adhesive contact between elastic solids via diffusive molecular bonds. Journal of the Mechanics and Physics of Solids, 2008, 56: 251–266.

    Article  MathSciNet  MATH  Google Scholar 

  115. Kong, D., Ji, B. and Dai, L., Stability of adhesion clusters and cell reorientation under lateral cyclic tension. Biophysical Journal, 2008, 95: 4034–4044.

    Article  Google Scholar 

  116. Ji, B., Kong, D. and Dai, L., Dynamics of adhesion cluster and cell reorientation under lateral cyclic loading. Biorheology, 2008, 45: 96–97.

    Google Scholar 

  117. Kong, D., Ji, B. and Dai, L., Stabilizing to disruptive transition of focal adhesion response to mechanical forces. Journal of Biomechanics, 2010, 43: 2524–2529.

    Article  Google Scholar 

  118. Geiger, B., Spatz, J.P. and Bershadsky, A.D., Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 2009, 10: 21–33.

    Article  Google Scholar 

  119. Puklin-Faucher, E. and Sheetz, M.P., The mechanical integrin cycle. Journal of Cell Science, 2009, 122: 179–186.

    Article  Google Scholar 

  120. Bershadsky, A., Kozlov, M. and Geiger, B., Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Current Opinion in Cell Biology, 2006, 18: 472–481.

    Article  Google Scholar 

  121. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. and Ingber, D.E., Geometric control of cell life and death. Science, 1997, 276: 1425–1428.

    Article  Google Scholar 

  122. DiMilla, P.A., Barbee, K. and Lauffenburger, D.A., Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophysical Journal, 1991, 60: 15–37.

    Article  Google Scholar 

  123. Sthanou, A., Mylona, E., Chaplain, M. and Tracqui, P., A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. Journal of Theoretical Biology, 2008, 253: 701–716.

    Article  MathSciNet  MATH  Google Scholar 

  124. Satulovsky, J., Lui, R. and Wang, Y.-L., Exploring the control circuit of cell migration by mathematical modeling. Biophysical Journal, 2008, 94: 3671–3683.

    Article  Google Scholar 

  125. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., Strongin, A.Y., Brocker, E.B. and Friedl, P., Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. Journal of Cell Biology, 2003, 160: 267–277.

    Article  Google Scholar 

  126. Hu, K., Ji, L., Applegate, K.T., Danuser, G. and Waterman-Storer, C.M., Differential transmission of actin motion within focal adhesions. Science, 2007, 315: 111–115.

    Article  Google Scholar 

  127. Lan, Y. and Papoian, G.A., The stochastic dynamics of filopodial growth. Biophysical Journal, 2008, 94: 3839–3852.

    Article  Google Scholar 

  128. Chan, C.E. and Odde, D.J., Traction dynamics of filopodia on compliant substrates. Science, 2008, 322: 1687–1691.

    Article  Google Scholar 

  129. Guo, W.-H. and Wang, Y.-L., Retrograde fluxes of focal adhesion proteins in response to cell migration and mechanical signals. Molecular Biology of the Cell, 2007, 18: 4519–4527.

    Article  Google Scholar 

  130. Mogilner, A., Mathematics of cell motility: have we got its number? Journal of Mathematical Biology, 2009, 58: 105–134.

    Article  MathSciNet  MATH  Google Scholar 

  131. Wyckoff, J.B., Pinner, S.E., Gschmeissner, S., Condeelis, J.S. and Sahai, E., ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Current Biology, 2006, 16: 1515–1523.

    Article  Google Scholar 

  132. Sahai, E. and Marshall, C.J., Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biology, 2003, 5: 711–719.

    Article  Google Scholar 

  133. Croft, D.R. and Olson, M. F., Regulating the conversion between rounded and elongated modes of cancer cell movement. Cancer Cell, 2008, 14: 349–351.

    Article  Google Scholar 

  134. Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., Sahai, E. and Marshall, C.J., Rac activation and inactivation control plasticity of tumor cell movement. Cell, 2008, 135: 510–523.

    Article  Google Scholar 

  135. Fata, J.E., Werb, Z. and Bissell, M.J., Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, 2003, 6: 1–11.

    Article  Google Scholar 

  136. Oikonomou, N., Harokopos, V., Zalevsky, J., Valavanis, C., Kotanidou, A., Szymkowski, D.E., Kollias, G. and Aidinis, V., Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. Plos One, 2006, 1: e108.

    Article  Google Scholar 

  137. Berk, B.C., Fujiwara, K. and Lehoux, S., ECM remodeling in hypertensive heart disease. Journal of Clinical Investigation, 2007, 117: 568–575.

    Article  Google Scholar 

  138. Plant, A.L., Bhadriraju, K., Spurlin, T.A. and Elliott, J.T., Cell response to matrix mechanics: Focus on collagen. Biochimica et Biophysica Acta (BBA) — Molecular Cell Research, 2009, 1793: 893–902.

    Article  Google Scholar 

  139. Saha, K., Keung, A.J., Irwin, E.F., Li, Y., Little, L., Schaffer, D.V. and Healy, K.E., Substrate modulus directs neural stem cell behavior. Biophysical Journal, 2008, 95: 4426–4438.

    Article  Google Scholar 

  140. Willits, R.K. and Skornia, S.L., Effect of collagen gel stiffness on neurite extension. Journal of Biomaterials Science — Polymer Edition, 2004, 15: 1521–1531.

    Article  Google Scholar 

  141. Leach, J.B., Brown, X.Q., Jacot, J.G., DiMilla, P.A. and Wong, J.Y., Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. Journal of Neural Engineering, 2007, 4: 26–34.

    Article  Google Scholar 

  142. Thomas, T.W. and DiMilla, P.A., Spreading and motility of human glioblastoma cells on sheets of silicone rubber depend on substratum compliance. Medical & Biological Engineering & Computing, 2000, 38: 360–370.

    Article  Google Scholar 

  143. Wozniak, M.A., Desai, R., Solski, P.A., Der, C.J. and Keely, P.J., ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 2003, 163: 583–595.

    Article  Google Scholar 

  144. King, C., Dembo, M. and Hammer, D.A., Cell-cell mechanical communication through compliant substrates. Biophysical Journal, 2008, 95: 6044–6051.

    Article  Google Scholar 

  145. Solon, J., Levental, I., Sengupta, K., Georges, P.C. and Janmey, P.A., Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical Journal, 2007, 93: 4453–4461.

    Article  Google Scholar 

  146. Lo, C.-M., Wang, H.-B., Dembo, M. and Wang, Y.-L., Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 2000, 79: 144–152.

    Article  Google Scholar 

  147. Ulrich, T.A., Pardo, E.M.D. and Kumar, S., The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Research, 2009, 69: 4167–4174.

    Article  Google Scholar 

  148. Cheng, C.-M., Steward Jr, R.L. and LeDuc, P.R., Probing cell structure by controlling the mechanical environment with cell-substrate interactions. Journal of Biomechanics, 2009, 42 187–192.

    Article  Google Scholar 

  149. Jiang, X.Y., Takayama, S., Qian, X.P., Ostuni, E., Wu, H.K., Bowden, N., LeDuc, P., Ingber, D.E. and White-sides, G.M., Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir, 2002, 18: 3273–3280.

    Article  Google Scholar 

  150. Selhuber-Unkel, C., Lopez-Garcia, M., Kessler, H. and Spatz, J.P., Cooperativity in adhesion cluster formation during initial cell adhesion. Biophysical Journal, 2008, 95: 5424–5431.

    Article  Google Scholar 

  151. Cavalcanti-Adam, E.A., Volberg, T., Micoulet, A., Kessler, H., Geiger, B. and Spatz, J.P., Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophysical Journal, 2007, 92: 2964–2974.

    Article  Google Scholar 

  152. Yamada, K.M., Pankov, R. and Cukierman, E., Dimensions and dynamics in integrin function. Brazilian Journal of Medical and Biological Research, 2003, 36: 959–966.

    Article  Google Scholar 

  153. Agoram, B., Barocas, V.H., Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. Journal of Biomechanical Engineering — Transactions of the ASME, 2001, 123: 362–369.

    Article  Google Scholar 

  154. Pedersen, J.A., Boschetti, F. and Swartz, M.A., Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. Journal of Biomechanics, 2007, 40: 1484–1492.

    Article  Google Scholar 

  155. Wang, J.H., Goldschmidt-Clermont, P. and Yin, F.C., Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Annals of Biomedical Engineering, 2000, 28: 1165–1171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baohua Ji or Gang Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, B., Bao, G. Cell and molecular biomechanics: perspectives and challenges. Acta Mech. Solida Sin. 24, 27–51 (2011). https://doi.org/10.1016/S0894-9166(11)60008-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60008-6

Key words

Navigation