Skip to main content
Log in

Perspectives in mechanics of heterogeneous solids

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The Micro- and Nano-mechanics Working Group of the Chinese Society of Theoretical and Applied Mechanics organized a forum to discuss the perspectives, trends, and directions in mechanics of heterogeneous materials in January 2010. The international journal, Acta Mechanica Solida Sinica, is devoted to all fields of solid mechanics and relevant disciplines in science, technology, and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. On the occasion of the 30th anniversary of Acta Mechanica Solida Sinica, its editor-in-chief, Professor Q.S. Zheng invited some of the forum participants to review the state-of-the-art of mechanics of heterogeneous solids, with a particular emphasis on the recent research development results of Chinese scientists. Their reviews are organized into five research areas as reported in different sections of this paper. §I firstly brings in focus on micro- and nano-mechanics, with regards to several selective topics, including multiscale coupled models and computational methods, nanocrystal superlattices, surface effects, micromechanical damage mechanics, and microstructural evolution of metals and shape memory alloys. §II shows discussions on multifield coupled mechanical phenomena, e.g., multi-fields actuations of liquid crystal polymer networks, mechanical behavior of materials under radiations, and micromechanics of heterogeneous materials. In § III, we mainly address the multiscale mechanics of biological nanocomposites, biological adhesive surface mechanics, wetting and dewetting phenomena on microstructured solid surfaces. The phononic crystals and manipulation of elastic waves were elaborated in § IV. Finally, we conclude with a series of perspectives on solid mechanics. This review will set a primary goal of future science research and engineering application on solid mechanics with the effort of social and economic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, J.Z. and Yang, H.Y., A dual coupled method of boundary value problems of PDE with coefficients of small period. Journal of Computer Mathematics, 1996, 14: 159–174.

    MathSciNet  MATH  Google Scholar 

  2. Cao, L.Q. and Cui, J.Z., Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains. Numerische Mathematik, 2004, 96: 525–581.

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, Y.Y. and Cui, J.Z., The multiscale computational method for the mechanics parameters of the materials with random distribution of multiscale grains. Composites Science and Technology, 2005, 65: 1447–1458.

    Article  Google Scholar 

  4. Cui, J. and Yu, X., A two-scale method for identifying mechanical parameters of composite materials with periodic configuration. Acta Mechanica Sinica, 2006, 22: 581–594.

    Article  MATH  Google Scholar 

  5. Han, F., Cui, J.Z. and Yu, Y., The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites. Interaction and Multi-scale Mechanics: An International Journal, 2008, 1: 231–251.

    Article  Google Scholar 

  6. Han F., Cui, J.Z. and Yu, Y., The statistical second-order two-scale method for thermomechanical properties of statistically inhomogeneous materials. Computational Materials Science, 2009, 46: 654–659.

    Article  Google Scholar 

  7. Tadmor, E.B., Ortiz, M. and Phillips, R., Quasicontinuum analysis of defects in solids. Philosophical Magzine A, 1996, 73: 1529–1563.

    Article  Google Scholar 

  8. Miller, R. and Tadmor, E.B., The Quasicontinuum Method: Overview, applications and current directions. Journal of Computer-Aided Materials Design, 2002, 9: 203–239.

    Article  Google Scholar 

  9. Rudd, R.E. and Broughton, J.Q., Coarse-grained molecular dynamics and the atomic limit of finite elements. Physical Review B, 1998, 58: 5893–5896.

    Article  Google Scholar 

  10. Wagner, G.J. and Liu, W.K., Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics, 2003, 190: 249–274.

    Article  MATH  Google Scholar 

  11. Li, X.T. and Weinan, E., Multiscale modeling of the dynamics of solids at finite temperature. Journal of the Mechanics and Physics of Solids, 2005, 53: 1650–1685.

    Article  MathSciNet  MATH  Google Scholar 

  12. Eringen, A.C., Continuum mechanics at atomistic scale. Crystal Lattice Defects, 1972, 75: 109–130.

    Google Scholar 

  13. Eringen, A.C., Theory of nonlocal thermoelasticity. International Journal of Engineering Science, 1974, 12: 1063–1077.

    Article  MATH  Google Scholar 

  14. Silling, S.A., Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48: 175–209.

    Article  MathSciNet  MATH  Google Scholar 

  15. Arndt, M. and Griebel, M., Derivation of higher order gradient continuum models from atomistic models for crystalline solids. Multiscale Modeling and Simulation, 2005, 4: 531–562.

    Article  MathSciNet  MATH  Google Scholar 

  16. Blanc, X., Le Bris, C. and Lions, P.L., From molecular models to continuum mechanics. Archive for Rational Mechanics and Analysis, 2002, 164: 341–381.

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiang, M.Z., Cui, J.Z. and Tian, X., A nonlocal continuum model based on atomistic model at zero temperature. IOP Conference Series: Materials Science and Engineering, 2010, 10: 012070.

    Article  Google Scholar 

  18. Liu, B., Huang, Y., Jiang, H., Qu, S. and Hwang, K.C., The atomic-scale finite element method. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1849–1864.

    Article  MATH  Google Scholar 

  19. Chen, Y.L., Liu, B., He, X.Q., Huang, Y. and Hwang, K.C., Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Composites Science and Technology, 2010, 70: 1360–1367.

    Article  Google Scholar 

  20. Murray, C.B., Kagan, C.R. and Bawendi, M.G., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 2000, 30: 545–610.

    Article  Google Scholar 

  21. Talapin, D.V., Lee, J.S., Kovalenko, M.V. and Shevchenko, E.V., Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews, 2010, 110: 389–458.

    Article  Google Scholar 

  22. Podsiadlo, P., Krylova, G., Lee, B., Critchley, K., Gosztola, D.J., Talapin, D.V., Ashby, P.D. and Shevchenko, E.V., The role of order, nanocrystal size, and capping ligands in the collective mechanical response of three-dimensional nanocrystal solids. Journal of the American Chemical Society, 2010, 132: 8953–8960.

    Article  Google Scholar 

  23. Schapotschnikow, P., Pool, R. and Vlugt, T.J.H., Molecular simulations of interacting nanocrystals. Nano Letters, 2008, 8: 2930–2934.

    Article  Google Scholar 

  24. Rupich, S.M., Shevchenko, E.V., Bodnarchuk, M.I., Lee, B. and Talapin, D.V., Size-dependent multiple twinning in nanocrystal superlattices. Journal of the American Chemical Society, 2010, 132: 289–296.

    Article  Google Scholar 

  25. Schall, P., Cohen, I., Weitz, D.A. and Spaepen, F., Visualization of dislocation dynamics in colloidal crystals. Science, 2004, 305: 1944–1948.

    Article  Google Scholar 

  26. Schall, P., Cohen, I., Weitz, D.A. and Spaepen, F., Visualizing dislocation nucleation by indenting colloidal crystals. Nature, 2006, 440: 319–323.

    Article  Google Scholar 

  27. Clyne, T.W., Golosnoy, I.O., Tan, J.C. and Markaki, A.E., Porous materials for thermal management under extreme conditions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364: 125–146.

    Article  Google Scholar 

  28. Jia, F., Yu, C., Deng, K. and Zhang, L., Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance. The Journal of Physical Chemistry C, 2007, 111: 8424–8431.

    Article  Google Scholar 

  29. Choi, Y.M. and Pyun, S.I., Effects of intercalation-induced stress on lithium transport through porous Li-CoO2 electrode. Solid State Ionics, 1997, 99: 173–183.

    Article  Google Scholar 

  30. Renganathan, S., Sikha, G., Santhanagopalan, S. and White, R.E., Theoretical analysis of stresses in a lithium ion cell. Journal of the Electrochemical Society, 2010, 157: 155–163.

    Article  Google Scholar 

  31. Cheng, Y.T. and Verbrugge, M.W., The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. Journal of Applied Physics, 2008, 104: 083521.

    Article  Google Scholar 

  32. Katoh, Y., Snead, L.L., Henager, C.H., Hasegawa, A., Kohyama, A., Riccardi, B. and Hegeman, H., Current status and critical issues for development of SiC composites for fusion applications. Journal of Nuclear Materials, 2007, 367: 659–671.

    Article  Google Scholar 

  33. Xue, K., Niu, L.S., Shi, H.J. and Liu, J., Structural relaxation of amorphous silicon carbide thin films in thermal annealing. Thin Solid Films, 2008, 516: 3855–3861.

    Article  Google Scholar 

  34. Xue, K., Niu, L.S. and Shi, H.J., Effects of quench rates on the short- and medium-range orders of amorphous silicon carbide: A molecular-dynamics study. Journal of Applied Physics, 2008, 104: 053518.

    Article  Google Scholar 

  35. Xue, K. and Niu, L.S., Understanding the changes in mechanical properties due to the crystalline-to-amorphization transition in SiC. Journal of Applied Physics, 2009, 106: 083505.

    Article  Google Scholar 

  36. Huh, C. and Scriven, L.E., Hydrodynamic model of the steady movement of a solid/liquid/fluid contact line. Journal of Colloid and Interface Science, 1971, 35: 85–101.

    Article  Google Scholar 

  37. Yuan, Q.Z. and Zhao, Y.P., Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Physical Review Letters, 2010, 104: 246101.

    Article  Google Scholar 

  38. Yuan, Q.Z. and Zhao, Y.P., Hydroelectric voltage generation based on water-filled single-walled carbonnanotubes. Journal of the American Chemical Society, 2009, 131: 6374–6376.

    Article  Google Scholar 

  39. Mchale, G., Newton, M.I., Rowan, S.M. and Banerjee, M., The spreading of small viscous stripes of oil. Journal of Physics D: Applied Physics, 1995, 28: 1925–1929.

    Article  Google Scholar 

  40. Mugele, F. and Baret, J.C., Electrowetting: From basics to applications. Journal of Physics—Condensed Matter, 2005, 17: 705–774.

    Article  Google Scholar 

  41. Yuan, Q.Z. and Zhao, Y.P., Transport properties and induced voltage in the structure of water-filled single-walled boron-nitrogen nanotubes. Biomicrofluidics, 2009, 3: 022411.

    Article  Google Scholar 

  42. Mura, T., Micromechanics of Defects in Solids. London: Springer, 1987.

    Book  MATH  Google Scholar 

  43. Nemat-Nasser, S., Hori, M. and Bielski, W., Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam: Elsevier, 1999.

    MATH  Google Scholar 

  44. Eshelby, J.D., Elastic inclusions and inhomogeneities. Progress in Solid Mechanics, 1961, 2: 89–140.

    MathSciNet  Google Scholar 

  45. Zheng, Q.S., Zhao, Z.H., Du, D.X., Irreducible structure, symmetry and average of Eshelby’s tensor fields in isotropic elasticity, Journal of the Mechanics and Physics of Solids, 2006, 54: 368–383.

    Article  MathSciNet  MATH  Google Scholar 

  46. Zou, W.N., He, Q.C., Huang, M.J. and Zheng, Q.S., Eshelby’s problem of non-elliptical inclusions. Journal of the Mechanics and Physics of Solids, 2010, 58: 346–372.

    Article  MathSciNet  MATH  Google Scholar 

  47. Cross, M.C. and Hohenberg, P.C., Pattern-formation outside of equilibrium. Review of Modern Physics, 1993, 65: 851–1112.

    Article  MATH  Google Scholar 

  48. Gollub, J.P. and Langer, J.S., Pattern formation in nonequilibrium physics. Review of Modern Physics, 1999, 71: S396–S403.

    Article  Google Scholar 

  49. Langer, J.S., Instabilities and pattern-formation in crystal-growth. Review of Modern Physics, 1980, 52: 1–28.

    Article  MathSciNet  Google Scholar 

  50. He, Y.J. and Sun, Q.P., Rate-dependent domain spacing in a stretched NiTi strip. International Journal of Solids and Structures, 2010, 47: 2775–2783.

    Article  MATH  Google Scholar 

  51. He, Y.J. and Sun, Q.P., Scaling relationship on macroscopic helical domains in NiTi tubes. International Journal of Solids and Structures, 2009, 46: 4242–4251.

    Article  MATH  Google Scholar 

  52. He, Y.J., Yin, H., Zhou, R.H. and Sun, Q.P., Ambient effect on damping peak of NiTi shape memory alloy. Materials Letters, 2010, 64: 1483–1486.

    Article  Google Scholar 

  53. Sun, Q.P. and He, Y.J., A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. International Journal of Solids and Structures, 2008, 45: 3868–3896.

    Article  MATH  Google Scholar 

  54. Huang, M.J. and Man, C.S., Constitutive relation of elastic polycrystal with quadratic texture dependence. Journal of Elasticity, 2003, 72: 183–212.

    Article  MathSciNet  MATH  Google Scholar 

  55. Roe, R.J., Description of crystallite orientation in polycrystalline materials. III: General solution to pole figure inversion. Journal of Applied Physics, 1965, 36: 2024–2031.

    Article  Google Scholar 

  56. Man, C.S., On the constitutive equations of some weakly-textured materials. Archive for Rational Mechanics and Analysis, 1998, 143: 77–103.

    Article  MathSciNet  MATH  Google Scholar 

  57. Huang, M.J., Lan, Z.W. and Liang, H.L., Constitutive relation of an orthorhombic polycrystal with the shape coefficients. Acta Mechanica Sinica, 2005, 21: 608–618.

    Article  MathSciNet  MATH  Google Scholar 

  58. Man, C.S., Effects of crystallographic texture on the acoustoelastic coefficients of polycrystals. Nondestructive Testing and Evaluation, 1999, 15: 191–214.

    Article  Google Scholar 

  59. Huang, M.J., Zhan, H., Lin, X.Q. and Tang, H., Constitutive relation of weakly anisotropic polycrystal with microstructure and initial stress. Acta Mechanica Sinica, 2007, 23: 183–198.

    Article  MathSciNet  MATH  Google Scholar 

  60. Huang, M.J. and Man, C.S., Explicit bounds of effective stiffness tensors for textured aggregates of cubic crystallites. Mathematics and Mechanics of Solids, 2008, 13: 408–430.

    Article  MathSciNet  MATH  Google Scholar 

  61. Man, C.S., On the correlation of elastic and plastic anisotropy in sheet metals. Journal of Elasticity, 1995, 39: 165–173.

    Article  MathSciNet  MATH  Google Scholar 

  62. Man, C.S. and Huang, M.J., Identification of material parameters in yield functions and flow rules for weakly textured sheets of cubic metals. International Journal of Nonlinear Mechanics, 2001, 36: 501–514.

    Article  MATH  Google Scholar 

  63. Li, B.W., Zhao, H.P., Feng, X.Q., Guo, W.W. and Shan, S.C., Experimental study on the mechanical properties of the horn sheaths from cattle. Journal of Experimental Biology, 2010, 213: 479–486.

    Article  Google Scholar 

  64. Peng, Z.L., Chen, S.H. and Soh, A.K., Peeling behavior of a bio-inspired nano-film on a substrate. International Journal of Solids and Structures, 2010, 47: 1952–1960.

    Article  MATH  Google Scholar 

  65. Bower, A.F., Cyclic hardening properties of hard-drawn copper and rail steel. Journal of the Mechanics and Physics of Solids, 1989, 37: 455–470.

    Article  Google Scholar 

  66. Sheng, G.M., Fan, J.H. and Peng, X.H., Influence of technical states and stress levels on contact fatigue life of PD3 rail steel. Acta Metallurgica Sinica, 2000, 36: 1157–1160.

    Google Scholar 

  67. Sheng, G.M., Fan, J.H., Peng, X.H., Jiang, B., Ji, K.B., Su, S.H. and Ke, X.T., Investigation of contact fatigue behaviors of PD3 rail steel. Steel Iron, 1998, 33: 35–39.

    Google Scholar 

  68. Langford, G., Deformation of pearlite. Metallurgical and Materials Transaction A, 1977, 8: 861–875.

    Article  Google Scholar 

  69. Yu, S.W. and Feng, X.Q., A micromechanics-based model for microcrack-weakened brittle solids, Mechanics of Materials, 1995, 20: 59–76.

    Article  Google Scholar 

  70. Feng, X.Q., Li, J.Y. and Yu, S.W., A simple method for calculating interaction of numerous microcracks and its applications. International Journal of Solids and Structures, 2003, 40: 447–464.

    Article  MATH  Google Scholar 

  71. Ren, Z.J., Peng, X.H., Hu, N. and Yang, C.H., A micromechanical damage model for rocks and concretes under triaxial compression. Applied Mathematics and Mechanics, 2009, 30: 323–333.

    Article  MATH  Google Scholar 

  72. Ren, Z.J., Peng, X.H. and Yang, C.H., Micromechanical damage model for rocks and concretes subjected to coupled tensile and shear stresses. Acta Mechanica Solida Sinica, 2008, 21: 232–240.

    Article  Google Scholar 

  73. Ma, L., Wang, X.Y., Feng, X.Q. and Yu, S.W., Numerical analysis of interaction and coalescence of numerous microcracks, Engineering Fracture Mechanics, 2005, 72: 1841–1865.

    Article  Google Scholar 

  74. Shaw, J.A. and Kyriakides, S., Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. International Journal of Plasticity, 1997, 13: 837–871.

    Article  Google Scholar 

  75. Sun, Q.P. and Li, Z.Q., Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion—from localization to homogeneous deformation. International Journal of Solids and Structures, 2002, 39: 3797–3809.

    Article  Google Scholar 

  76. Peng, X., Pi, W. and Fan, J., A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs. International Journal of Plasticity, 2008, 24: 966–990.

    Article  MATH  Google Scholar 

  77. Chu, X., Barnett, S.A., Wong, M.S. and Sproul, W.D., Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings. Surface and Coatings Technology, 1993, 57: 13–18.

    Article  Google Scholar 

  78. Sproul, W.D., High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings. Vacuum, 1998, 51: 641–646.

    Article  Google Scholar 

  79. Chu, X., Sproul, W.D., Rohde, S.L. and Barnett, S.A., Deposition and properties of polycrystalline TiN/NbN superlattice coatings. Journal of Vacuum Science and Technology A, 1992, 10: 1604–1609.

    Article  Google Scholar 

  80. Yin, D.Q., Peng, X.H., Qin, Y. and Wang, Z.C., Electronic property and bonding configuration at the TiN(111)/VN(111) interface. Journal of Applied Physics, 2010, 108: 033714.

    Article  Google Scholar 

  81. Xie, P. and Zhang, R.B., Liquid crystal elastomers, networks and gels: advanced smart materials. Journal of Materials Chemistry, 2005, 15: 2529–2550.

    Article  Google Scholar 

  82. de Gennes, P.-G., Re’flexions sur un type de polyme‘res ne’matiques. Comptes Rendus de l’Académie des Sciences, 1975, 281: 101–103.

    Google Scholar 

  83. Warner, M., New elastic behaviour arising from the unusual constitutive relation of nematic solids. Journal of the Mechanics and Physics of Solids, 1999, 47: 1355–1377.

    Article  MathSciNet  MATH  Google Scholar 

  84. Conti, S., DeSimone, A. and Dolzmann, G., Soft elastic response of stretched sheets of nematic elastomers: a numerical study. Journal of the Mechanics and Physics of Solids, 2002, 50: 1431–1451.

    Article  MathSciNet  MATH  Google Scholar 

  85. DeSimone, A. and Teresi, L., Elastic energies for nematic elastomers. The European Physical Journal E, 2009, 29: 191–204.

    Article  Google Scholar 

  86. Fried, E. and Sellers, S., Free-energy density functions for nematic elastomers. Journal of the Mechanics and Physics of Solids, 2004, 52: 1671–1689.

    Article  MathSciNet  MATH  Google Scholar 

  87. Jin, L., Yan, Y. and Huo, Y., A gradient model of light-induced bending in photochromic liquid crystal elastomer and its nonlinear behaviors. International Journal of Nonlinear Mechanics, 2010, 45: 370–381.

    Article  Google Scholar 

  88. Finkelmann, H., Kim, S.T., Munoz, A., Palffy-Muhoray, P. and Taheri, B., Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Advanced Materials, 2001, 13: 1069–1072.

    Article  Google Scholar 

  89. Yu, Y.L., Nakano, M. and Ikeda, T., Directed bending of a polymer film by light — Miniaturizing a simple photomechanical system could expand its range of applications. Nature, 2003, 425: 145–145.

    Article  Google Scholar 

  90. van Oosten, C.L., Bastiaansen, C.W.M. and Broer, D.J., Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Materials, 2009, 8: 677–682.

    Article  Google Scholar 

  91. Lehmann, W., Skupin, H., Tolksdorf, C., Gebhard, E., Zentel, R., Kruger, P., Losche, M. and Kremer, F., Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 2001, 410: 447–450.

    Article  Google Scholar 

  92. Finkelmann, H., Nishikawa, E., Pereira, G.G. and Warner, M., A new opto-mechanical effect in solids. Physical Review Letters, 2001, 8701: 015501.

    Article  Google Scholar 

  93. Ding, R., Huo, Z. and Li, L.A., Effects of fission heat and fuel swelling on the thermal-mechanical behaviors of dispersion fuel elements. Mechanics of Advanced Materials and Structures, 2009, 16: 552–559.

    Article  Google Scholar 

  94. Huo, Y., Zu, X.T., Li, A., Wang, Z.G. and Wang, L.M., Modeling and simulation of irradiation effects on martensitic transformations in shape memory alloys. Acta Materialia, 2004, 52: 2683–2690.

    Article  Google Scholar 

  95. Fu, S.Y., Feng, X.Q., Lauke, B. and Mai, Y.W., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Composites Part B: Engineering, 2008, 39: 933–961.

    Article  Google Scholar 

  96. Hu, G., Liu, X. and Lu, T.J., A variational method for non-linear micropolar composites. Mechanics of Materials, 2005, 37: 407–425.

    Article  Google Scholar 

  97. Luciano, R. and Willis, J.R., Bounds on non-local effective relations for random composites loaded by configuration-dependent body force. Journal of the Mechanics and Physics of Solids, 2000, 48: 1827–1849.

    Article  MathSciNet  MATH  Google Scholar 

  98. Bigoni, D. and Drugan, W.J., Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. Journal of Applied Mechanics—Transaction of the ASME, 2007, 74: 741–753.

    Article  MathSciNet  Google Scholar 

  99. Chen, H., Liu, X., Hu, G. and Yuan, H., Identification of material parameters of micropolar theory for composites by homogenization method. Computational Materials Science, 2009, 46: 733–737.

    Article  Google Scholar 

  100. Forest, S., Barbe, F. and Cailletaud, G., Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. International Journal of Solids and Structures, 2000, 37: 7105–7126.

    Article  MathSciNet  MATH  Google Scholar 

  101. Shelby, R.A., Smith, D.R. and Schultz, S., Experimental verification of a negative index of refraction. Science, 2001, 292: 77–79.

    Article  Google Scholar 

  102. Zhou, X.M. and Hu, G.K., Analytic model of elastic metamaterials with local resonances. Physical Review B, 2009, 79: 195109.

    Article  Google Scholar 

  103. Smith, D.R. and Pendry, J.B., Homogenization of metamaterials by field averaging (invited paper). Journal of the Optical Society of America B, 2006, 23: 391–403.

    Article  Google Scholar 

  104. Gao, H., Ji, B., Jager, I.L., Arzt, E. and Fratzl, P., Materials become insensitive to flaws at nanoscale: Lessons from nature. Proceedings of National Academy of Science of the United States of America, 2003, 100: 5597–5600.

    Article  Google Scholar 

  105. Ji, B. and Gao, H., Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 2004, 52: 1963–1990.

    Article  MATH  Google Scholar 

  106. Gao, H., Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. International Journal of Fracture, 2006, 138: 101–137.

    Article  MATH  Google Scholar 

  107. Song, F., Soh, A.K. and Bai, Y.L., Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 2003, 24: 3622–3631.

    Article  Google Scholar 

  108. Song, F, Zhou, J.B., Xu, X.H., Xu, Y. and Bai, Y.L., Effect of a negative Poisson ratio in the tension of ceramics. Physical Review Letters, 2008, 100: 245502.

    Article  Google Scholar 

  109. Dai, Z.D. and Yang, Z.X., Macro-/micro-structures of elytra, mechanical properties of the biomaterial and the coupling strength between elytra in beetles. Journal of Bionic Engineering, 2010, 7: 6–12.

    Article  Google Scholar 

  110. Yang, Z.X., Dai, Z.D. and Guo, C., Morphology and mechanical properties of Cybister elytra. Chinese Science Bulletin, 2010, 54: 771–776.

    Article  Google Scholar 

  111. Dai, Z.D., Zhang, Y.F., Liang, X.C. and Sun, J.R., Coupling between elytra of some beetles: Mechanism, forces and effects of surface texture. Science in China Series C: Life Sciences, 2008, 51: 894–901.

    Google Scholar 

  112. Kong, X.Q. and Wu, C.W., Mosquito proboscis: An elegant biomicroelectromechanical system. Physical Review E, 2010, 82: 011910.

    Article  Google Scholar 

  113. Zhao, H.P., Feng, X.Q., Yu, S.W., Cui, W.Z. and Zou, F.Z., Mechanical properties of silkworm cocoons. Polymer, 2005, 46: 9192–9201.

    Article  Google Scholar 

  114. Zhao, H.P. and Feng, X.Q., Variability in mechanical properties of Bombyx mori silk, Materials Science and Engineering C—Biomimetic and Supramolecular Systems, 2007, 27: 675–683.

    Article  Google Scholar 

  115. Li, B.W., Zhao, H.P., Feng, X.Q., Guo, W.W. and Shan S.C., Experimental study on the mechanical properties of the horn sheaths from cattle. Journal of Experimental Biology, 2010, 213: 479–486.

    Article  Google Scholar 

  116. Zhao, J., Chen, C., Liang, Y. and Wang, J., Mechanical properties and structure of Haliotis discus hannai Ino and Hemifusus tuba conch shells: a comparative study. Acta Mechanica Sinica, 2010, 26: 21–25.

    Article  Google Scholar 

  117. Zhang, K., Si, F.W., Duan, H.L. and Wang, J., Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomaterialia, 2010, 6: 2165–2171.

    Article  Google Scholar 

  118. Liu, B., Zhang, L. and Gao, H., Poisson ratio can play a crucial role in mechanical properties of biocomposites. Mechanics of Materials, 2006, 38: 1128–1142.

    Article  Google Scholar 

  119. Liu, B., Feng, X. and Zhang, S.M., The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect. Composites Science and Technology, 2009, 69: 2198–2204.

    Article  Google Scholar 

  120. Joly, L. and Biben, T., Wetting and friction on superoleophobic surfaces. Soft Matter, 2009, 5: 2549–2557.

    Google Scholar 

  121. Rothstein, J.P., Slip on superhydrophobic surfaces. Annual Review of Fluid Mechanics, 2010, 42: 89–109.

    Article  Google Scholar 

  122. Zheng, Q.S., Yu, Y., and Zhao, Z.H., Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir, 2005, 21: 12207–12212.

    Article  Google Scholar 

  123. Liu, H, Li, S.H., Zhai, J., Li, H.J., Zheng, Q.S., Jiang, L. and Zhu, D.B., Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angewandte Chemie-International Edition, 2004, 43: 1146–1149.

    Article  Google Scholar 

  124. Yu, Y., Zhao, Z.H., Zheng, Q.S., Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves. Langmuir, 2007, 23: 8212–8216.

    Article  Google Scholar 

  125. Zheng, Q.S., Lv, C.J., Hao, P.F. and Sheridan, J, Small is beautiful, and dry. Science China—Physics, Mechanics & Astronomy, 2010, 53: 2245–2259.

    Article  Google Scholar 

  126. Li, W. and Amirfazli, A., Superhydrophobic surfaces: Adhesive strongly to water? Advanced Materials, 2007, 19: 3421–3422.

    Article  Google Scholar 

  127. Su, Y.W., Ji, B.H., Huang, Y.G. and Hwang, K., Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir, 2010, 6: 18926–18937.

    Article  Google Scholar 

  128. Su, Y.W., Ji, B.H., Zhang, K., Gao, H.J., Huang, Y.G. and Hwang, K., Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir, 2010, 26: 4984–4989.

    Article  Google Scholar 

  129. Wu, C.W., Kong, X.Q. and Wu, D., Micronanostructures of the scales on a mosquito’s leg and their role in weight support. Physical Review E, 2007, 76: 017301

    Article  Google Scholar 

  130. Feng, X.Q., Gao, X.F., Wu, Z.N., Jiang, L. and Zheng, Q.S., Superior water repellence of water strider legs with hierarchical structures: experiments and analysis. Langmuir, 2007, 23: 4892–4896.

    Article  Google Scholar 

  131. Arzt, E., Gorb, S. and Spolenak, R., From micro to nano contacts in biological attachment devices. Proceedings of National Academy of Science of the United States of America, 2003, 100: 10603–10606.

    Article  Google Scholar 

  132. Gao, H. and Yao, H., Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proceedings of National Academy of Science of the United States of America, 2004, 101: 7851–7856.

    Article  Google Scholar 

  133. Gao, H. and Chen, S.H., Flaw tolerance in a thin strip under tension. Journal of Applied Mechanics, 2005, 72: 732–737.

    Article  MATH  Google Scholar 

  134. Chen, S.H. and Gao, H., Non-slipping adhesive contact of an elastic cylinder on stretched substrates. Proceedings of The Royal Society A—Mathematical Physical and Engineering Sciences, 2006, 462: 211–228.

    Article  MathSciNet  MATH  Google Scholar 

  135. Chen, S.H. and Gao, H., Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. Journal of the Mechanics and Physics of Solids, 2007, 55: 1001–1015.

    Article  MATH  Google Scholar 

  136. Chen, S.H., Yan, C. and Soh, A.K., Non-slipping JKR model for transversely isotropic materials. International Journal of Solids and Structure, 2008, 45: 676–687.

    Article  MATH  Google Scholar 

  137. Chen, S.H., Yan, C., Zhang, P. and Gao, H., Mechanics of adhesive contact on a power-law elastic half-space. Journal of the Mechanics and Physics of Solids, 2009, 57: 1434–1448.

    MathSciNet  MATH  Google Scholar 

  138. Chen, S.H., Xu, G. and Soh, A.K., Size-dependent adhesion strength of a single viscoelastic fiber. Tribology Letters, 2010, 37: 375–379.

    Article  Google Scholar 

  139. Peng, X., Pi, W. and Fan, J., A Microstructure-damage-based description for the size effect of the constitutive behavior of pearlitic steels. International Journal of Damage Mechanics, 2010, 19: 821–849.

    Article  Google Scholar 

  140. Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L. and Djafarirouhani, B., Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71: 2022–2025.

    Article  Google Scholar 

  141. Liu, Z.Y., Zhang, X.X., Mao, Y, W., Zhu, Z.Z., Yang, Z.Y., Chan, C.T. and Sheng, P., Locally resonant sonic materials. Science, 2000, 289: 1734–1736.

    Article  Google Scholar 

  142. Bliokh, K.Y. and Freilikher, V.D., Localization of transverse waves in randomly layered media at oblique incidence. Physical Review B, 2004, 70: 245121.

    Article  Google Scholar 

  143. Chen, A.L. and Wang, Y.S., Study on band gaps of elastic waves propagating in one dimensional disordered phononic crystals. Physica B, 2007, 392: 369–378.

    Article  Google Scholar 

  144. Goffaux, C. and Vigneron, J.P., Theoretical study of a tunable phononic band gap system. Physical Review B, 2001, 64: 075118.

    Article  Google Scholar 

  145. Yan, Z.Z. and Wang, Y.S., Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Physical Review B, 2008, 78: 094306.

    Article  Google Scholar 

  146. Yan, Z.Z. and Wang, Y.S., Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Physical Review B, 2006, 74: 224303.

    Article  Google Scholar 

  147. Kafesaki, M. and Economou, E.N., Multiple-scattering theory for three-dimensional periodic acoustic composites. Physical Review B, 1999, 60: 11993–12001.

    Article  Google Scholar 

  148. Wang, G., Wen, J.H., Liu, Y.Z. and Wen, X.S., Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Physical Review B, 2004, 69: 184302.

    Article  Google Scholar 

  149. Tanaka, Y. and Tomoyasu, Y., Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch. Physical Review B, 2000, 62: 7387–7392.

    Article  Google Scholar 

  150. Zhou, X.Z., Wang, Y.S. and Zhang, Ch., Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals. Journal of Applied Physics, 2009, 106: 014903.

    Article  Google Scholar 

  151. Kushwaha, M.S. and Halevi, P., Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders. Applied Physics Letters, 1996, 69: 31–33.

    Article  Google Scholar 

  152. Chen, A.L., Wang, Y.S., Li, J.B. and Zhang, Ch., Localization of elastic waves in two-dimensional randomly disordered solid phononic crystals. Waves in Random and Complex Media, 2010, 20: 104–121.

    Article  MATH  Google Scholar 

  153. Chen, A.L., Wang, Y.S., Guo, Y.F. and Wang, Z.D., Band structures of Fibonacci phononic quasicrystals. Solid State Communications, 2008, 145: 103–108.

    Article  Google Scholar 

  154. Li, Y., Hou, Z.L., Fu, X.J. and Assouar, B.M., Symmetric and anti-symmetric Lamb waves in a two-dimensional phononic crystal plate. Chinese Physics Letters, 2010, 27: 074303.

    Article  Google Scholar 

  155. Psarobas, I.E., Stefanou, N. and Modinos, A., Phononic crystals with planar defects. Physical Review B, 2000, 62: 5536–5540.

    Article  Google Scholar 

  156. Benchabane, S., Khelif, A., Choujaa, A., Djafari-Rouhani, B. and Laude, V., Interaction of waveguide and localized modes in a phononic crystal. Europhysics Letters, 2005, 71: 570–575.

    Article  Google Scholar 

  157. Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O. and Larabi, H., Acoustic channel drop tunneling in a phononic crystal. Applied Physics Letters, 2005, 87: 261912.

    Article  Google Scholar 

  158. Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Khelif, A. and Deymier, P.A., Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Physical Review E, 2004, 69: 046608.

    Article  Google Scholar 

  159. Page, J.H., Sheng, P., Schriemer, H.P., Jones, I., Jing, X.D. and Weitz, D.A., Group velocity in strongly scattering media. Science, 1996, 271: 634–637.

    Article  Google Scholar 

  160. Torres, M. and Montero de Espinosa, F.R., Ultrasonic band gaps and negative refraction. Ultrasonics, 2004, 42: 787–790.

    Article  Google Scholar 

  161. Fang, N., Xi, D.J., Xu, J.Y., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nature Materials, 2006, 5: 452–456.

    Article  Google Scholar 

  162. Mei, J., Liu, Z.Y., Wen, W.J. and Sheng, P., Effective mass density of fluid-solid composites. Physical Review Letters, 2006, 96: 024301.

    Article  Google Scholar 

  163. Hsu, F.C., Wu, T.T., Hsu, J.C. and Sun, J.H., Directional enhanced acoustic radiation caused by a point cavity in a finite-size two-dimensional phononic crystal. Applied Physics Letters, 2008, 93: 201904.

    Article  Google Scholar 

  164. Liu, W. and Su, X.Y., Collimation and enhancement of elastic transverse waves in two-dimensional solid phononic crystals. Physics Letters A, 2010, 374: 2968–2971.

    Article  Google Scholar 

  165. Farthat, M., Guenneau, S., Enoch, S. and Movchan, A.B., Negative reflection, surface modes, and supperlensing effect via homogenization near resonances for a finite array of split-ring resonators. Physical Review E, 2009, 80: 046309.

    Article  Google Scholar 

  166. Farhat, M., Enoch, S., Guenneau, S. and Movchan, A.B., Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Physical Review Letters, 2008, 101: 134501.

    Article  Google Scholar 

  167. Torrent, D. and Sánchez-Dehesa, J., Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 2007, 9: 323.

    Article  Google Scholar 

  168. Lin, S.C.S. and Huang, T.J., Acoustic mirage in two-dimensional gradient-index phononic crystals. Journal of Applied Physics, 2009, 106: 053529.

    Article  Google Scholar 

  169. Qiu, C.Y., Liu, Z.Y., Mei, J. and Shi, J., Mode-selecting acoustic filter by using resonant tunneling. Applied Physics Letters, 2005, 87: 104101.

    Article  Google Scholar 

  170. Lucklum, R. and Li, J., Phononic crystals for liquid sensor applications. Measurement Science and Technology, 2009, 20: 124014.

    Article  Google Scholar 

  171. Gonella, S., To, A.C. and Liu, W.K., Interplay between phononic band gaps and piezoelectric microstructures for energy harvesting. Journal of the Mechanics and Physics of Solids, 2009, 57: 621–633.

    Article  MATH  Google Scholar 

  172. Gillet, J.N., Chalopin, Y. and Volz, S., Atomic-scale three-dimensional phononic crystals with a very low thermal conductivity to design crystalline thermoelectric devices. Journal of Heat Transfer, 2009, 131: 043206.

    Article  Google Scholar 

  173. Wang, Y.Z., Li, F.M., Kishimoto, K., Wang, Y.S. and Huang, W.H., Band gap behaviors of periodic magnetoelectroelastic composite structures with Kagome lattices. Waves in Random and Complex Media, 2009, 19: 509–520.

    Article  MATH  Google Scholar 

  174. Robillard, J. F., Matar, O.B., Vasseur, J.O., Deymier, P.A., Stippinger, M., Hladky-Hennion, A.C., Pennec, Y. and Djafari-Rouhani, B., Tunable magnetoelastic phononic crystals. Applied Physics Letters, 2009, 95: 124104.

    Article  Google Scholar 

  175. Jim, K.L., Leung, C.W., Lau, S.T., Choy, S.H. and Chan, H.L.W., Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal. Applied Physics Letters, 2009, 94: 193501.

    Article  Google Scholar 

  176. Yang, W.P. and Chen, L.W., The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator. Smart Materials & Structures, 2008, 17: 015011.

    Article  Google Scholar 

  177. Romero-García, V., Sánchez-Pérez, J.V., García-Raffi, L.M., Herrero, J.M., Garcia-Nieto, S. and Blasco, X., Hole distribution in phononic crystals: design and optimization. The Journal of the Acoustical Society of America, 2009, 125: 3774–3783.

    Article  Google Scholar 

  178. Su, M.F., Olsson, R.H. and Leseman, Z.C., El-Kady I. Realization of a phononic crystal operating at gigahertz frequencies. Applied Physics Letters, 2010, 96: 053111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Q. Chen, X. Q. Feng or Q. S. Zheng.

Additional information

Supports from NSFC and MOST are acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.Q., Cui, J.Z., Duan, H.L. et al. Perspectives in mechanics of heterogeneous solids. Acta Mech. Solida Sin. 24, 1–26 (2011). https://doi.org/10.1016/S0894-9166(11)60007-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60007-4

Key words

Navigation