Skip to main content
Log in

Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Various methods have been developed to fabricate highly stretchable electronics. Recent studies show that over 100% two dimensional stretchability can be achieved by mesh structure of brittle functioning devices interconnected with serpentine bridges. Kim et al show that pressing down an inflated elastomeric thin film during transfer printing introduces two dimensional prestrain, and therefore further improves the system stretchability. This paper gives a theoretical study of this process, through both analytical and numerical approaches. Simple analytical solutions are obtained for meridional and circumferential strains in the thin film, as well as the maximum strain in device islands, which all agree reasonably well with finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, D.H., Ahn, J.H., Choi, W.M., Kim, H.S., Kim, T.H., Song, J., Huang, Y., Liu, Z., Lu, C. and Rogers, J.A., Stretchable and foldable silicon integrated circuits. Science, 2008, 320: 507–511.

    Article  Google Scholar 

  2. Kim, D.H., Choi, W.M., Ahn, J.H., Kim, H.S., Song, J., Huang, Y., Liu, Z., Lu, C., Koh, C.G. and Rogers, J.A., Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects. Applied Physics Letters, 2008, 93: 044102.

    Article  Google Scholar 

  3. Kim, D.H., Liu, Z., Kim, Y.S., Wu, J., Song, J., Kim, H.S., Huang, Y., Hwang, K.C., Zhang, Y. and Rogers, J.A., Optimized structural designs for stretchable silicon integrated circuits. Small, 2009, 5: 2841–2847.

    Article  Google Scholar 

  4. Kim, D.H., Viventi, J., Amsden, J.J., Xiao, J., Vigeland, L., Kim, Y.S., Blanco, J.A., Panilaitis, B., Frechette, E.S., Contreras, D., Kaplan, D.L., Omenetto, F.G., Huang, Y., Hwang, K.C., Zakin, M.R., Litt, B. and Rogers, J.A., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Materials, 2010, 9: 511–517.

    Article  Google Scholar 

  5. Viventi, J., Kim, D.H., Moss, J.D., Kim, Y.S., Blanco, J.A., Annetta, N., Hicks, A., Xiao, J., Huang, Y., Callans, D.J., Rogers, J.A. and Litt, B., A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Science Translational Medicine, 2010, 2: 24ra22.

    Article  Google Scholar 

  6. Mannsfeld, S.C.B., Tee, B.C.K., Stoltenberg, R.M., Chen, C.V.H.H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C. and Bao, Z., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 2010, 9: 859–864.

    Article  Google Scholar 

  7. Takei, K., Takahashi, T., Ho, J.C., Ko, H., Gillies, A.G., Leu, P.W., Fearing, R.S. and Javey, A., Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 2010, 9: 821–826.

    Article  Google Scholar 

  8. Someya, T., Sakurai, T., Sekitani, T. and Noguchi, Y., Printed organic transistors for large-area electronics. In: 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, 2007: 6–11.

  9. Kim, R.H., Kim, D.H., Xiao, J., Kim, B.H., Park, S.I., Panilaitis, B., Ghaffari, R., Yao, J., Li, M., Liu, Z., Malyarchuk, V., Kim, D.G., Le., A.P., Nuzzo, G., R., Kaplan., D.L., Omenetto., F.G., Huang, Y., Kang, Z. and Rogers, J.A., Waterproof AlInGaP optoelectronics on flexible substrates with applications in biomedicine and robotics. Nature Materials, 2010, 9: 929–937.

    Article  Google Scholar 

  10. Bernards, D.A., Biegala, T., Samuels, Z.A., Slinker, J.D., Malliaras, G.G., Flores-Torres, S., Abruna, H.D. and Rogers, J.A., Organic light-emitting devices with laminated top contacts. Applied Physics Letters, 2004, 84: 3675–3677.

    Article  Google Scholar 

  11. Park, S.I., Le, A.P., Wu, J., Huang, Y., Li, X. and Rogers, J.A., Light emission characteristics and mechanics of foldable inorganic light-emitting diodes. Advanced Materials, 2010, 22: 3062–3066.

    Article  Google Scholar 

  12. Lee, T.W., Zaumseil, J., Bao, Z., Hsu, J.W.P. and Rogers, J.A., Organic light-emitting diodes formed by soft contact lamination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 429–433.

    Article  Google Scholar 

  13. Park, S.I., Xiong, Y., Kim, R.H., Elvikis, P., Meitl, M., Kim, D.H., Wu, J., Yoon, J., Yu, C.J., Liu, Z., Huang, Y., Hwang, K.C., Ferreira, P., Li, X., Choquette, K. and Rogers, J.A., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science, 2009, 325: 977–981.

    Article  Google Scholar 

  14. Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J. and Drzaic, P., Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 4835–4840.

    Article  Google Scholar 

  15. Jung, I., Shin, G., Malyarchuk, V., Ha, J.S. and Rogers, J.A., Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts. Applied Physics Letters, 2010, 96: 021110.

    Article  Google Scholar 

  16. Wang, S., Xiao, J., Jung, I., Song, J., Ko, H.C., Stoykovich, M.P., Huang, Y., Hwang, K.C. and Rogers, J.A., Mechanics of hemispherical electronics. Applied Physics Letters, 2009, 95: 181912.

    Article  Google Scholar 

  17. Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J., Geddes, J.B., Xiao, J., Wang, S., Huang, Y. and Rogers, J.A., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454: 748–753.

    Article  Google Scholar 

  18. Ko, H.C., Shin, G., Wang, S., Stoykovich, M.P., Lee, J.W., Kim, D.H., Ha, J.S., Huang, Y., Hwang, K.C. and Rogers, J.A., Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small, 2009, 5: 2703–2709.

    Article  Google Scholar 

  19. Shin, G., Jung, I., Malyarchuk, V., Song, J., Wang, S., Ko, H.C., Huang, Y., Ha, J.S. and Rogers, J.A., Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic eye cameras. Small, 2010, 6: 851–856.

    Article  Google Scholar 

  20. Kim, D.H., Xiao, J., Song, J., Huang, Y. and Rogers, J.A., Stretchable, curvilinear electronics based on inorganic materials. Advanced Materials, 2010, 22: 2108–2124.

    Article  Google Scholar 

  21. Wang, S., Xiao, J., Song, J., Ko, H.C., Hwang, K.C., Huang, Y. and Rogers, J.A., Mechanics of curvilinear electronics. Soft Matter, 2010, 6: 5757–5763.

    Article  Google Scholar 

  22. Yoon, J., Baca, A.J., Park, S.I., Elvikis, P., Geddes, J.B., Li, L., Kim, R.H., Xiao, J., Wang, S., Kim, T.H., Motala, M.J., Ahn, B.Y., Duoss, E.B., Lewis, J.A., Nuzzo, R.G., Ferreira, P.M., Huang, Y., Rockett, A. and Rogers, J.A., Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Materials, 2008, 7: 907–915.

    Article  Google Scholar 

  23. Baca, A.J., Yu, K.J., Xiao, J., Wang, S., Yoon, J., Ryu, J.H., Stevenson, D., Nuzzo, R.G., Rockett, A.A., Huang, Y. and Rogers, J.A., Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environmental Science, 2010, 3: 208–211.

    Article  Google Scholar 

  24. Rogers, J.A. and Huang, Y., A curvy, stretchy future for electronics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 10875–10876.

    Article  Google Scholar 

  25. Rogers, J.A., Someya, T. and Huang, Y., Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607.

    Article  Google Scholar 

  26. Khang, D.Y., Jiang, H., Huang, Y. and Rogers, J.A., A stretchable form of single-crystal silicon for highperformance electronics on rubber substrates. Science, 2006, 311: 208–212.

    Article  Google Scholar 

  27. Jiang, H., Khang, D, Y., Song, J., Sun, Y., Huang, Y. and Rogers, J.A., Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 15607–15612.

    Article  Google Scholar 

  28. Khang, D.Y., Xiao, J., Kocabas, C., MacLaren, S., Banks, T., Jiang, H., Huang, Y. and Rogers, J.A., Molecular scale buckling mechanics on individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Letters, 2008, 8: 124–130.

    Article  Google Scholar 

  29. Xiao, J., Jiang, H., Khang, D.Y., Wu, J., Huang, Y. and Rogers, J.A., Mechanics of buckled carbon nanotubes on elastomeric substrates. Journal of Applied Physics, 2008, 104: 033543.

    Article  Google Scholar 

  30. Ryu, S.Y., Xiao, J., Park, W.II., Son, K.S., Huang, Y., Paik, U. and Rogers, J.A., Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Letters, 2009, 9: 3214–3219.

    Article  Google Scholar 

  31. Xiao, J., Ryu, S.Y., Huang, Y., Hwang, K.C., Paik, U. and Rogers, J.A., Mechanics of nanowire/nanotube insurface buckling on elastomeric substrates. Nanotechnology, 2010, 21: 085708.

    Article  Google Scholar 

  32. Lacour, S.P., Chan, D., Wagner, S., Li, T. and Suo, Z., Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Applied Physics Letters, 2006, 88: 204103.

    Article  Google Scholar 

  33. Lacour, S.P., Wagner, S., Huang, Z. and Suo, Z., Stretchable gold conductors on elastomeric substrates. Applied Physics Letters, 2003, 82: 2404.

    Article  Google Scholar 

  34. Li, T., Suo, Z., Lacour, S.P. and Wagner, S., Compliant thin film patterns of stiff materials as platforms for stretchable electronics. Journal of Materials Research, 2005, 20: 3274–3277.

    Article  Google Scholar 

  35. Li, T., Huang, Z., Suo, Z., Lacour, S.P. and Wagner, S., Stretchability of thin metal films on elastomer substrates. Applied Physics Letters, 2004, 85: 3435–3437.

    Article  Google Scholar 

  36. Mcdonald, J.C. and Whitesides, G.M., Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research, 2002, 35: 491–499.

    Article  Google Scholar 

  37. Kmaltezos, G., Nortrup, R., Jeon, S., Zaumseil, J. and Rogers, J.A., Tunable organic transistors that use microfluidic source and drain electrodes. Applied Physics Letters, 2003, 83: 10.

    Google Scholar 

  38. Kim, H.J., Son, Ch. and Ziaie B., A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Applied Physics Letters, 2008, 92: 011904.

    Article  Google Scholar 

  39. Choi, W.M., Song, J., Khang, D.Y., Jiang, H., Huang, Y. and Rogers, J.A., Biaxially stretchable ‘Wavy’ silicon nanomembranes. Nano Letters, 2007, 7: 1655–1663.

    Article  Google Scholar 

  40. So, J.H., Thelen, J., Qusba, A., Hayes, G.J., Lazzi, G. and Dickey, M.D., Reversibly deformable and mechanically tunable fluidic antennas. Advanced Functional Materials, 2009, 19: 3632–3637.

    Article  Google Scholar 

  41. Jiang, H., Khang, D.Y., Fei, H., Kim, H., Huang, Y., Xiao, J. and Rogers, J.A., Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies. Journal of the Mechanics and Physics of Solids, 2008, 56: 2585–2598.

    Article  MathSciNet  Google Scholar 

  42. Wang, S., Song, J., Kim, D.H., Huang, Y. and Rogers, J.A., Local versus global buckling of thin films on elastomeric substrates. Applied Physics Letters, 2008, 93: 023126.

    Article  Google Scholar 

  43. Song, J., Jiang, H., Liu, Z., Khang, D.Y., Huang, Y., Rogers, J.A., Lu, C. and Koh, C.G., Buckling of a stiff thin film on a compliant substrate in large deformation. International Journal of Solids and Structures, 2008, 45: 3107–3121.

    Article  Google Scholar 

  44. Siegel, A.C., Tang, S.K.Y., Nijhuis, C.A., Hashimoto, M., Phillips, S.T., Dickey, M.D. and Whitesides, G.M., Cofabrication: a strategy for building multicomponent Microsystems. Accounts of Chemical Research, 2010, 43: 518–528.

    Article  Google Scholar 

  45. Jones, J., Lacour, S.P., Wagner, S. and Suo, Z., Stretchable wavy metal interconnects. Journal of Vacuum Science & Technology A, 2004, 22: 1723–1725.

    Article  Google Scholar 

  46. Brosteaux, D., Axisa, F., Gonzalez, M. and Vanfleteren, J., Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Letters, 2007, 28: 552–554.

    Article  Google Scholar 

  47. Zoumpoulidisa, T., Barteka, M., de Graafb, P. and Dekkera, R., High-aspect-ratio through-wafer parylene beams for stretchable silicon electronics. Sensors and Actuators A: Physical, 2009, 156: 257–264.

    Article  Google Scholar 

  48. Hsu, Y.Y., Gonzalez, M., Wolf, I.D., In situ observations on deformation behavior and stretchinginduced failure of fine pitch stretchable interconnect. Journal of Materials Research, 2009, 24: 3573–3582.

    Article  Google Scholar 

  49. Kim, H.J., Maleki, T., Wei, P., Ziaie, B. and Member, S., A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. Journal of Microelectromechanical systems, 2009, 18: 138–146.

    Article  Google Scholar 

  50. Lin, K.L. and Jain, K., Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation. IEEE Electron Device Letters, 2009, 30: 14–17.

    Article  Google Scholar 

  51. Huang, Y., Zhou, W., Hsia, K.J., Menard, E., Park, J.U., Rogers, J.A. and Alleyne, A.G., Stamp collapse in soft lithography. Langmuir, 2005, 21: 8058–8068.

    Article  Google Scholar 

  52. Hsia, K.J., Huang, Y., Menard, E., Park, J.U., Zhou, W., Rogers, J.A. and Fulton, J.M., Collapse of stamps for soft lithography due to interfacial adhesion. Applied Physics Letters, 2005, 86: 154106.

    Article  Google Scholar 

  53. Zhou, W., Huang, Y., Menard, E., Aluru, N.R., Rogers, J.A. and Alleyne, A.G., Mechanism for stamp collapse in soft lithography. Applied Physics Letters, 2005, 87: 251925.

    Article  Google Scholar 

  54. Meitl, M.A., Zhu, Z.T., Kumar, V., Lee, K.J., Feng, X., Huang, Y., Adesida, I., Nuzzo, R.G. and Rogers, J.A., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 2006, 5: 33–38.

    Article  Google Scholar 

  55. Meitl, M.A., Feng, X., Dong, J., Menard, E., Ferreira, P., Huang, Y. and Rogers, J.A., Stress focusing for controlled fracture in microelectromechanical systems. Applied Physics Letters, 2007, 90: 083110.

    Article  Google Scholar 

  56. Feng, X., Meitl, M.A., Bowen, A.M., Huang, Y., Nuzzo, R.G. and Rogers, J.A., Competing fracture in kinetically controlled transfer printing. Langmuir, 2007, 23: 12555–12560.

    Article  Google Scholar 

  57. Kim, T.H., Carlson, A., Ahn, J.H., Won, S.M., Wang, S., Huang, Y. and Rogers, J.A., Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Applied Physics Letters, 2009, 94: 113502.

    Article  Google Scholar 

  58. Kim, S., Wu, J., Carlson, A., Jin, S.H., Kovalsky, A., Glass, P., Liu, Z., Ahmed, N., Elgan, S.L., Chen, W., Ferreira, P.M., Sitti, M., Huang, Y. and Rogers, J.A., Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 17095–17100.

    Article  Google Scholar 

  59. Kim, D.H., Kim, Y.S., Wu, J., Liu, Z., Song, J., Kim, H.S., Huang, Y., Hwang K.C. and Rogers, J.A., Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Advanced Materials, 2009, 21: 3703–3707.

    Article  Google Scholar 

  60. Kim, D.H., Song, J., Choi, W.M., Kim, H.S., Kim, R.H., Liu, Z., Huang, Y., Hwang, K.C., Zhang, Y.W. and Rogers, J.A., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 18675–18680.

    Article  Google Scholar 

  61. Song, J., Huang, Y., Xiao, J., Wang, S., Hwang, K.C., Ko, H.C., Kim, D.H., Stoykovich, M.P. and Rogers, J.A., Mechanics of non-coplanar mesh design for stretchable electronic circuits. Journal of Applied Physics, 2009, 105: 123516.

    Article  Google Scholar 

  62. Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W. and Whitesides, G.M., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 1998, 393: 146–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Huang.

Additional information

Project supported by the NSF (Nos. DMI-0328162 and ECCS-0824129). Yonggang Huang also acknowledges the support from NSFC and Ming Li acknowledges the support from China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Xiao, J., Wu, J. et al. Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics. Acta Mech. Solida Sin. 23, 592–599 (2010). https://doi.org/10.1016/S0894-9166(11)60006-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60006-2

Key words

Navigation