Skip to main content
Log in

Mechanics of carbon nanoscrolls: A review

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Carbon nanoscrolls (CNSs) belong to the same class of carbon-based nanomaterials as carbon nanotubes but are much less studied in spite of their great potential for applications in nanotechnology and bioengineering. Fundamental description, understanding and regulation of such materials will ultimately lead to a new generation of integrated systems that utilize their unique properties. In this review, we describe some of the recent advances in theoretical investigation on structural and dynamical behavior of CNS, as well as relevant simulation techniques. Theoretically it has been found that a stable equilibrium core size of CNS can be uniquely determined or tuned from the basal graphene length, the interlayer spacing, the interaction energy between layers of CNS and the bending stiffness of graphene. Perturbations of the surface energy, which can be controlled by an electric field, will cause a CNS to undergo breathing oscillatory motion as well as translational rolling motion on a substrate. The tunable core size of CNS also enables it to serve potentially as transmembrane water channels in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viculis, L.M., Mack, J.J. and Kaner, R.B., A chemical route to carbon nanoscrolls. Science, 2003, 299: 1361.

    Article  Google Scholar 

  2. Xie, X., Ju, L., Feng, X.F., Sun, Y.H., Zhou, R.F., Liu, K., Fan, S.S., Li, Q.L. and Jiang, K.L., Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Letters, 2009, 9: 2565–2570.

    Article  Google Scholar 

  3. Savoskin, M.V., Mochalin, V.N., Yaroshenko, A.P., Lazareva, N.I., Konstantinova, T.E., Barsukov, I.V. and Prokofiev, L.G., Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon, 2007, 45: 2797–2800.

    Article  Google Scholar 

  4. Roy, D., Angeles-Tactay, E., Brown, R.J.C., Spencer, S.J., Fry, T., Dunton, T.A., Young, T. and Milton, M.J.T., Synthesis and raman spectroscopic characterisation of carbon nanoscrolls. Chemical Physics Letters, 2008, 465: 254–257.

    Article  Google Scholar 

  5. Chuvilin, A.L., Kuznetsov, V.L. and Obraztsov, A.N., Chiral carbon nanoscrolls with a polygonal cross-section. Carbon, 2009, 47: 3099–3105.

    Article  Google Scholar 

  6. Shioyama, H. and Akita, T., A new route to carbon nanotubes. Carbon, 2003, 41: 179–181.

    Article  Google Scholar 

  7. Chen, Y., Lu, J. and Gao, Z.X., Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. The Journal of Physical Chemistry C, 2007, 111: 1625–1630.

    Article  Google Scholar 

  8. Braga, S.F., Coluci, V.R., Legoas, S.B., Giro, R., Galvao, D.S. and Baughman, R.H., Structure and dynamics of carbon nanoscrolls. Nano Letters, 2004, 4: 881–884.

    Article  Google Scholar 

  9. Braga, S.F., Coluci, V.R., Baughman, R.H. and Galvao, D.S., Hydrogen storage in carbon nanoscrolls: an atomistic molecular dynamics study. Chemical Physics Letters, 2007, 441: 78–82.

    Article  Google Scholar 

  10. Coluci, V.R., Braga, S.F., Baughman, R.H. and Galvao, D.S., Prediction of the hydrogen storage capacity of carbon nanoscrolls. Physical Review B, 2007, 75: 125404.

    Article  Google Scholar 

  11. Mpourmpakis, G., Tylianakis, E. and Froudakis, G.E., Carbon nanoscrolls: a promising material for hydrogen storage. Nano Letters 2007, 7: 1893–1897.

    Article  Google Scholar 

  12. Pan, H., Feng, Y. and Lin, J., An initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Physical Review B, 2005, 72: 085415.

    Article  Google Scholar 

  13. Rurali, R., Coluci, V.R. and Galvao, D.S., Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: first-principles calculations. Physical Review B, 2006, 74: 085414.

    Article  Google Scholar 

  14. Shi, X.H., Pugno, N.M. and Gao, H.J., Tunable core size of carbon nanoscrolls. Journal of Computational and Theoretical Nanoscience, 2010, 7: 517–521.

    Article  Google Scholar 

  15. Shi, X.H., Pugno, N.M. and Gao, H.J., Constitutive behavior of pressurized carbon nanoscrolls. International Journal of Fracture, 2010, Doi: 10.1007/s10704-010-9545-y.

    Article  Google Scholar 

  16. Shi, X.H., Cheng, Y., Pugno, N.M. and Gao, H.J., Gigahertz breathing oscillators based on carbon nanoscrolls. Applied Physics Letters, 2009, 95: 163113.

    Article  Google Scholar 

  17. Shi, X.H., Cheng, Y., Pugno, N.M. and Gao, H.J., A translational nanoactuator based on carbon nanoscrolls on substrates. Applied Physics Letters, 2010, 76: 053115.

    Article  Google Scholar 

  18. Shi, X.H., Cheng, Y., Pugno, N.M. and Gao, H.J., Tunable water channels with carbon nanoscrolls. Small, 2010, 6: 739–744.

    Article  Google Scholar 

  19. Zhang, Z. and Li, T., Carbon nanotube initiated formation of carbon nanoscrolls. Applied Physics Letters, 2010, 97: 081909.

    Article  Google Scholar 

  20. Hess, B., Kutzner, C., van der Spoel, D. and Lindahl, E., Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4: 435–447.

    Article  Google Scholar 

  21. Walther, J.H., Jaffe, R., Halicioglu, T. and Koumoutsakos, P., Carbon nanotubes in water: structural characteristics and energetics. Journal of Physical Chemistry B, 2001, 105: 9980–9987.

    Article  Google Scholar 

  22. Plimpton, S., Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 1995, 117: 1–19.

    Article  Google Scholar 

  23. Patra, N., Wang, B.Y. and Krá., P., Nanodroplet activated and guided folding of graphene nanostructures. Nano Letters, 2009, 9: 3766–3771.

    Article  Google Scholar 

  24. Martins, B.V.C. and Galvao, D.S., Curved graphene nanoribbons: structure and dynamics of carbon nanobelts. Nanotechnology, 2010, 21: 075710.

    Article  Google Scholar 

  25. Xu, Z.P. and Buehler, M.J., Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. ACS Nano, 2010, 4: 3869–3876.

    Article  Google Scholar 

  26. Israelachvili, J., Intermolecular & Surface Forces. London: Academic Press, 1991.

    Google Scholar 

  27. Langlet, R., Devel, M. and Lambin, P., Computation of the static polarizabilities of multi-wall carbon nanotubes and fullerites using a gaussian regularized point dipole interaction model. Carbon, 2006, 44: 2883–2895.

    Article  Google Scholar 

  28. Fogler, M.M., Castro Neto, A.H. and Guinea, F., Effect of external conditions on the structure of scrolled graphene edges. Physical Review B, 2010, 81: 161408.

    Article  Google Scholar 

  29. Hummer, G., Rasaiah, J.C. and Noworyta, J.P., Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414: 156–159.

    Article  Google Scholar 

  30. Garate, J.A., English, N.J. and MacElro., J.M.D., Carbon nanotube assisted water self-diffusion across lipid membranes in the absence and presence of electric fields. Molular Simulation, 2009, 35: 3–12.

    Article  Google Scholar 

  31. Zhu, F.Q. and Schulten, K., Water and proton conduction through carbon nanotubes as models for biological channels. Biophysical Journal, 2003, 85: 236–244.

    Article  Google Scholar 

  32. Wan, R.Z., Li, J.Y., Lu, H.J. and Fang, H.P., Controllable water channel gating of nanometer dimensions. Journal of the American Chemical Society, 2005, 127: 7166–7170.

    Article  Google Scholar 

  33. Joseph, S. and Aluru, N.R., Pumping of confined water in carbon nanotubes by rotation-translation coupling. Physical Review Letters, 2008, 101: 064502.

    Article  Google Scholar 

  34. Liu, B., Li, X.Y., Li, B.L., Xu, B.Q. and Zhao, Y.L., Carbon nanotube based artificial water channel protein: Membrane perturbation and water transportation. Nano Letters, 2009, 9: 1386–1394.

    Article  Google Scholar 

  35. Zou, J., Ji, B.H., Feng, X.Q. and Gao, H.J., Molecular-dynamic studies of carbon-water-carbon composite nanotubes. Small, 2006, 2: 1348–1355.

    Article  Google Scholar 

  36. Yuan, Q.Z. and Zhao, Y.P., Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. Journal of the American Chemical Society, 2009, 131: 6374–6376.

    Article  Google Scholar 

  37. Mashl, R.J., Joseph, S., Aluru, N.R. and Jakobsson, E., Anomalously immobilized water: A new water phase induced by confinement in nanotubes. Nano Letters, 2003, 3: 589–592.

    Article  Google Scholar 

  38. Gong, X.J., Li, J.Y., Lu, H.J., Wan, R.Z., Li, J.C., Hu, J. and Fang, H.P., A charge-driven molecular water pump. Nature Nanotechnology, 2007, 2: 709–712.

    Article  Google Scholar 

  39. Li, J.Y., Gong, X.J., Lu, H.J., Li, D., Fang, H.P. and Zhou, R.H., Electrostatic gating of a nanometer water channel. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 3687–3692.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Pugno, N.M. & Gao, H. Mechanics of carbon nanoscrolls: A review. Acta Mech. Solida Sin. 23, 484–497 (2010). https://doi.org/10.1016/S0894-9166(11)60002-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60002-5

Navigation