Skip to main content
Log in

Micromechanics of Rough Surface Adhesion: A Homogenized Projection Method

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A quasistatic homogenized projection is made to characterize the effective cohesive zone behavior for rough-surface adhesion. In the context of the homogenized projection, the traction versus separation relation for the homogenized cohesive zone (HCZ) of a rough interface can be highly oscillatory due to instabilities during microscopic adhesion and decohesion processes. The instabilities are found to occur not only individually but also collectively among the adhesive micro-asperity contacts, leading to extensive energy dissipation. Based on the behaviors of the HCZ relations, a framework for describing instability-induced energy dissipation in rough-surface adhesion is proposed to elucidate the effect of roughness on apparent interface adhesion. Two non-dimensional parameters, α related to roughness morphology and n related to flaw distribution, are identified to be most crucial for controlling the energy dissipation. For an interface with a shallow roughness and a strong intrinsic adhesive strength, the interface adhesion can be stronger if we make it rougher (reducing α) or lower its flaw density (increasing n). The HCZ projection method can be potentially extended and employed to bridge the apparent adhesion from intrinsic adhesion properties for engineering surfaces with multi-scale shallow roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.D., Comyn, J. and Wake, W.C., Structural Adhesive Joints in Engineering (2nd Edition). London: Chapman & Hall, 1997.

    Google Scholar 

  2. Maboudian, R. and Howe, R.T., Critical review: adhesion in surface micromechanical structures. The Journal of Vacuum Science and Technology B, 1997, 15(1): 1–20.

    Article  Google Scholar 

  3. Hjortso, M.A. and Roos, J.W., Cell Adhesion: Fundamentals and Biotechnological Applications. Boca Raton, FL: CRC Press, 1994.

    Google Scholar 

  4. Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996, 84: 345–357.

    Article  Google Scholar 

  5. Lane, M., Interface fracture. Annual Review of Materials Research, 2003, 33: 29–54.

    Article  Google Scholar 

  6. Zhao, Y.-P., Wang, L.S. and Yu, T.X., Mechanics of adhesion in MEMS — A review. Journal of Adhesion Science and Technology, 2003, 17(4): 519–546.

    Article  Google Scholar 

  7. Buckley, C.D., Rainger, G.E., Bradfield, P.F., Nash, G.B. and Simmons, D.L., Cell adhesion: more than just glue (review). Molecular Membrane Biology, 1998, 15: 167–176.

    Article  Google Scholar 

  8. Israelachvili, J.N., Intermolecular and Surface Forces. (2nd Edition). London: Academic Press, 1992.

    Google Scholar 

  9. Leckband, D. and Israelachvili, J.N., Intermolecular forces in biology. Quarterly Review of Biophysics, 2001, 34(2): 105–267.

    Article  Google Scholar 

  10. Persson, B.N.J., Contact mechanics for randomly rough surfaces. Surface Science Reports, 2006, 61: 201–227.

    Article  Google Scholar 

  11. Persson, B.N.J., Adhesion between an elastic body and a randomly rough hard surface. The European Physical Journal E, 2002, 8: 385–401.

    Article  Google Scholar 

  12. Brown, H.R., The adhesion between polymers. Annual Review of Materials Science, 1991, 21: 463–489.

    Article  Google Scholar 

  13. Evans, A.G., Hutchinson, J.W. and Wei, Y., Interface adhesion: effects of plasticity and segregation. Acta Materialia, 1999, 47(15–16): 4093–4113.

    Article  Google Scholar 

  14. Barenblatt, G.I., The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962, 7: 55–129.

    Article  MathSciNet  Google Scholar 

  15. Needleman, A., A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 1987, 54(3): 525–531.

    Article  Google Scholar 

  16. Camacho, G.T. and Ortiz, M., Computational modeling of impact damage in brittle materials. International Journal of Solids and Structures, 1996, 33(20–22): 2899–2938.

    Article  Google Scholar 

  17. Xia, S., Qi, Y., Perry, T. and Kim, K.-S., Strength characterization of Al/Si interfaces: A hybrid method of nanoindentation and finite element analysis. Acta Materialia, 2009, 57(3): 695–707.

    Article  Google Scholar 

  18. da Silva, K.D., Beltz, G.E. and Machova, A., Tension-shear coupling in slip and decohesion of iron crystals. Scripta Materialia, 2003, 49: 1163–1167.

    Article  Google Scholar 

  19. Cleri, F., Phillpot, S.R., Wolf, D. and Yip, S., Atomistic simulations of materials fracture and the link between atomic and continuum length scales. Journal of the American Ceramic Society, 1998, 81(3): 501–516.

    Article  Google Scholar 

  20. Sansoz, F. and Molinari, J.F., Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper. Scripta Materialia, 2004, 50: 1283–1288.

    Article  Google Scholar 

  21. Choi, S.T. and Kim, K.-S., Nanoscale planar field projections of atomic decohesion and slip in crystalline solids. Part I. A crack-tip cohesive zone. Philosophical Magazine, 2007, 87(12): 1889–1919.

    Article  Google Scholar 

  22. Hong, S. and Kim, K.-S., Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip: a field projection method. Journal of Mechanics of Physics of Solids, 2003, 51: 1267–1286.

    Article  Google Scholar 

  23. Kendall, K., Molecular Adhesion and Its Applications: The Sticky Universe. Berlin, Germany: Springer, 2001.

    Google Scholar 

  24. Hui, C.Y., Lin, Y.Y., Baney, J.M. and Kramer, E.J., The mechanics of contact and adhesion of periodically rough surfaces. Journal of Polymer Science: Part B: Polymer Physics, 2001, 39: 1195–1214.

    Article  Google Scholar 

  25. Komvopoulos, K., Surface engineering and microtribology for microelectromechanical systems. Wear, 1996, 200: 305–327.

    Article  Google Scholar 

  26. Fuller, K.N.G. and Tabor, D., The effect of surface roughness on the adhesion of elastic solids. Proceeding of the Royal Society of London A, 1975, 345: 327–342.

    Article  Google Scholar 

  27. Quon, R.A., Knarr, R.F. and Vanderlick, T.K., Measurement of the deformation and adhesion of rough solids in contact. The Journal of Physical Chemistry B, 2006, 103: 5320–5327.

    Article  Google Scholar 

  28. Benz, M., Rosenberg, K.J., Kramer, E.J. and Israelachvili, J.N., The deformation and adhesion of randomly rough and patterned surfaces. The Journal of Physical Chemistry B, 2006, 110(24): 11884–11893.

    Article  Google Scholar 

  29. Drelich, J., Adhesion forces measured between particles and substrates with nano-roughness. Minerals and Metallurgical Processing, 2006, 23: 226–232.

    Google Scholar 

  30. Bhushan, B., Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribology Letters, 1998, 4: 1–35.

    Article  Google Scholar 

  31. Briggs, G.A.D. and Briscoe, B.J., The effect of surface topography on the adhesion of elastic solids. Journal of Physics D: Applied Physics, 1977, 10: 2453–2466.

    Article  Google Scholar 

  32. Fuller, K.N.G. and Roberts, A.D., Rubber rolling on rough surfaces. Journal of Physics D: Applied Physics, 1981, 14: 221–239.

    Article  Google Scholar 

  33. Kim, H.-C. and Russell, T.P., Contact of elastic solids with rough surfaces. Journal of Polymer Science: Part B: Polymer Physics, 2001, 39: 1848–1854.

    Article  Google Scholar 

  34. Carbone, G., Mangialardi, L. and Persson, B.N.J., Adhesion between a thin elastic plate and a hard randomly rough substrate. Physical Review B, 2004, 70: 125407.

    Article  Google Scholar 

  35. Verneuil, E., Ladoux, B., Buguin, A. and Silberzan, P., Adhesion on microstructured surfaces. The Journal of Adhesion, 2007, 83: 449–472.

    Article  Google Scholar 

  36. Buzio, R. and Valbusa, U., Interfacial stiffness and adhesion of randomly rough contacts probed by elastomer colloidal AFM probes. Journal of Physics: Condensed Matter, 2008, 20: 354014.

    Google Scholar 

  37. Li, Q. and Kim, K.-S., Micromechanics of friction: effects of nanometre-scale roughness. Proceedings of the Royal Society A, 2008, 464(2093), 1319–1343.

    Article  Google Scholar 

  38. Bowden, F.P. and Tabor, D., The Friction and Lubrication of Solids. Oxford, UK: Oxford University Press, 1954.

    MATH  Google Scholar 

  39. Johnson, K.L., Kendall, K. and Roberts, A.D., Surface energy and the contact of elastic solids. Proceedings of the Royal Society A, 1971, 324: 301–313.

    Article  Google Scholar 

  40. Johnson, K.L., The adhesion of two elastic bodies with slightly wavy surfaces. International Journal of Solids and Structures, 1995, 32: 423–430.

    Article  Google Scholar 

  41. Westergard, H.M., Bearing pressures and cracks. Journal of Applied Mechanics, 1939, 6: 49–53.

    Google Scholar 

  42. Tada, H., Paris, P.C. and Irwin, G.R., The Stress Analysis of Cracks Handbook (2nd Edition), St Louis, MO: Paris Productions, 1985.

    Google Scholar 

  43. Ndiaye, I., Maslouhi, A. and Denault, J., Characterization of interfacial properties of composite materials by acoustic emission. Polymer Composites, 2000, 21(4): 595–604.

    Article  Google Scholar 

  44. Yao, H. and Gao, H., Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids, 2006, 54: 1120–1146.

    Article  Google Scholar 

  45. Cardy, J., Scaling and Renormalization in Statistical Physics. Cambridge: Cambridge University Press, 1996.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunyang Li.

Additional information

Project supported in part by the Nano and Bio Mechanics Program, under award CMS-0511961, and in part by the MRSEC Program, under award DMR-0520651, of the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Kim, KS. Micromechanics of Rough Surface Adhesion: A Homogenized Projection Method. Acta Mech. Solida Sin. 22, 377–390 (2009). https://doi.org/10.1016/S0894-9166(09)60288-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(09)60288-3

Key words

Navigation