Skip to main content
Log in

Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The singular characteristics of stress, electric displacement and magnetic induction fields near the tip of impermeable interfacial cracks in two-dimensional magnetoelectroelastic bimaterials are studied using the generalized Stroh formalism. Two types of singularities are obtained: one is the oscillating singularity 1/2±iε, the other is the non-oscillating singularity 1/2±κ. It is found that the non-zero parameters ε and κ cannot coexist for one transversely isotropic MEE bimaterial, a similar result is obtained for transversely isotropic piezoelectric bimaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bracke, L.P.M. and Van Vliet, R.G., A broadband magneto-electric transducer using a composite material. International Journal of Electronics, 1981, 51: 255–262.

    Article  Google Scholar 

  2. Feng, W.J, Nie, H. and Han, X., A penny-shaped crack in a magnetoelectroelastic layer under radial shear impact loading. Acta Mechanica Solida Sinica, 2007, 20: 275–282.

    Article  Google Scholar 

  3. Li, G., Wang, B.L, Han, J.C. and Du, S.Y., Anti-plane analysis for elliptical inclusion in magnetoelectroelastic materials. Acta Mechanica Solida Sinica, 2009, 22: 137–142.

    Article  Google Scholar 

  4. Feng, W.J., Pan, E. and Wang, X., Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. International Journal of Solids and Structures, 2007, 44: 7955–7974.

    Article  Google Scholar 

  5. Sih, G.C. and Song, Z.F., Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite. Theoretical and Applied Fracture Mechanics, 2003, 39: 209–227.

    Article  Google Scholar 

  6. Wang, B.L. and Mai, Y.W., Fracture of piezoelectromagnetic materials. Mechanics Research Communications, 2004, 31(1): 65–73.

    Article  Google Scholar 

  7. Gao, C.F., Kessler, H. and Balke, H., Crack problems in magnetoelectroelastic solids, Part I: exact solution of a crack. International Journal of Engineering Science, 2003, 41(9): 969–981.

    Article  MathSciNet  Google Scholar 

  8. Gao, C.F., Tong, P. and Zhang, T.Y., Interfacial crack problems in magneto-electroelastic solids. International Journal of Engineering Science, 2003, 41(18): 2105–2121.

    Article  Google Scholar 

  9. Zhao, M.H., Wang, H., Yang, F. and Liu, T., A magnetoelectroelastic medium with an elliptical cavity under combined mechanical-electric-magnetic loading. Theoretical and Applied Fracture Mechanics, 2006, 45: 227–237.

    Article  Google Scholar 

  10. Williams, M.L., The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America, 1959, 49: 119–204.

    MathSciNet  Google Scholar 

  11. Gao, H., Weight function analysis of interface cracks: mismatch versus oscillation. Journal of Applied Mechanics, Transactions ASME, 1991, 58: 931–938.

    Article  Google Scholar 

  12. Suo, Z., Kuo, C.M., Barnett, D.M. and Willis, J.R., Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids, 1992, 40: 739–765.

    Article  MathSciNet  Google Scholar 

  13. Ou, Z.C. and Wu, X.J., On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. International Journal of Solids and Structures, 2003, 40: 7499–7511.

    Article  Google Scholar 

  14. Ou, Z.C. and Chen, Y.H., Interface crack-tip generalized stress field and stress intensity factors in transversely isotropic piezoelectric bimaterials. Mechanics Research Communications, 2004, 31: 421–428.

    Article  Google Scholar 

  15. Chen, Z.T., Karihaloo, B.L. and Yu, S.W., A Griffith crack moving along the interface of two dissimilar piezoelectric materials. International Journal of Fracture, 1998, 91: 197–203.

    Article  Google Scholar 

  16. Zhang, T.Y., Zhao, M.H. and Tong, P., Fracture of piezoelectric ceramics. Advances in Applied Mechanics, 2002, 38: 147–289.

    Article  Google Scholar 

  17. Gu, B., Yu, S.W. and Feng, X.Q., Transient response of an interface crack between dissimilar piezoelectric layers under mechanical impacts. International Journal of Solids and Structures, 2002, 39: 1743–1756.

    Article  Google Scholar 

  18. Qin, Q.H. and Mai, Y.W., A closed crack tip model for interface cracks in thermopiezoelectric materials. International Journal of Solids and Structures, 1999, 36: 2463–2479.

    Article  Google Scholar 

  19. Chen, Y.H. and Lu, T.J., Cracks and fracture in piezoelectric materials. Advances in Applied Mechanics, 2002, 39: 121–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Zhao.

Additional information

Project supported by the National Natural Science Foundation of China (No.10572131) and the Program for New Century Excellent Talents in University of HeNan Province (HANCET).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, C., Zhou, Y., Wang, H. et al. Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials. Acta Mech. Solida Sin. 22, 232–239 (2009). https://doi.org/10.1016/S0894-9166(09)60270-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(09)60270-6

Key words

Navigation