Advertisement

Implications of an agricultural mosaic in small mammal communities

abstract

The ideas that larger fragments have greater species richness and abundance, when compared to smaller fragments and altered environments, and that assemblage composition is different, was tested in an agricultural mosaic using data on small mammals. To achieve this, we sampled ten forest fragments of different sizes, small and large, as well as five areas in a sugarcane matrix, through the capture-mark-recapture method. The study was conducted in a sugarcane plantation (Usina São José, Igarassu, Pernambuco, Brazil) from January to October 2016. There was a significant difference when comparing richness between small fragments (eight species) and the sugarcane matrix (four species). Abundance differed significantly between all areas, being influenced by fragment size and habitat type. We found that abundance was positively influenced by forested environments and, among them, larger fragments. The composition of assemblages in the forest fragments and the sugarcane matrix differed clearly for NMDS, MANOVA and SIMPER analyses. Between the habitats, assemblage parameters were also distinct. Lower abundance and richness were found in the sugarcane matrix, where the presence of rodents was associated with food availability and less competition; and higher abundance and richness was measured in forest fragments, where there was a strong association between marsupials and forest strata. The landscape configuration in an agricultural mosaic can compromise the level of interspecific interactions of small mammals, which negatively impacts the ecological processes of forested areas. In this case, the conservation of a matrix permeable to most species and the preservation of all fragments are necessary, since small and large fragments have different functions in the maintenance of species.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. Alvares, C.A., Stape, J.L., Sentelhas, P.C., de Moraes Goncalves, J.L., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. 22 (6), 711–728, https://doi.org/10.1127/0941-2948/2013/0507.

  2. Asfora, P.H., Mendes Pontes, A.R., 2009. The small mammals of the highly impacted North-eastern Atlantic Forest of Brazil, Pernambuco Endemism Center. Biota Neotrop. 9 (1), 31–35, https://doi.org/10.1590/S1676-06032009000100004.

  3. Benedek, A.M., Sirbu, I., 2018. Responses of small mammal communities to environment and agriculture in a rural mosaic landscape. Mammal. Biol. 90, 55–65, https://doi.org/10.1016/j.mambio.2018.02.008.

  4. Bonecker, S.T., Portugal, G.L., Costa-Neto, S.F., Gentile, R., 2009. A long term study of small mammal populations in a Brazilian agricultural landscape. Mammal. Biol. 74 (6), 467–477, https://doi.org/10.1016/j.mambio.2009.05.010.

  5. Bonvicino, C.R., Lindbergh, S.M., Maroja, L.S., 2002. Small non-flying mammals from conserved and altered areas of Atlantic Forest and Cerrado: comments on their potential use for monitoring environment. Braz. J. Biol. 62 (4B), 765–774, https://doi.org/10.1590/S1519-69842002000500005.

  6. Butler, R.A., Laurance, W.F., 2008. New strategies for conserving tropical forests. Trends Ecol. Evol. 23 (9), 469–472, https://doi.org/10.1016/j.tree.2008.05.006.

  7. Brito, D., 2009. Análise de viabilidade de populações: uma ferramenta para a conservação da biodiversidade no Brasil. Oecologia Bras. 13 (3), 452–469, https://doi.org/10.4257/oeco.2009.1303.04.

  8. Cáceres, N.C., Monteiro-Filho, E.L.A., 2007. Germination in seed species ingested by opossums: implications for seed dispersal and forest conservation. Braz. Arch. Biol. Technol. 50 (6), 921–928.

  9. Cáceres, N.C., Weber, M.M., Melo, G.L., Meloro, C., Sponchiado, J., Carvalho, R.S., et al., 2016. Which factors determine spatial segregation in the South American opossums (Didelphis aurita and D. albiventris)? An ecological niche modelling and geometric morphometrics approach. PLoS ONE 11 (6), 1–19, https://doi.org/10.1371/journal.pone.0157723.

  10. Castro, E.B.V., Fernandez, F.A.S., 2004. Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biol. Conserv. 119 (1), 73–80, https://doi.org/10.1016/j.biocon.2003.10.023.

  11. Costa, L.P., Leite, Y.L.R., Fonseca, G.A.B., Fonseca, M.T., 2000. Biogeography of South American Forest Mammals: endemism and diversity in the Atlantic Forest. Biotropica 32 (4b), 872–881, https://doi.org/10.1646/0006-3606(2000)032[0872:BOSAFM]2.0.CO;2.

  12. Dantas-Torres, F., Aléssio, F.M., Siqueira, D.B., Mauffrey, J.F., Marvulo, M.F.V., Martins, T.F., Moraes-Filho, J., Camargo, M.C.G.O., D’Auria, S.R.N., Labruna, M.B., Silva, J.C.R., 2012. Exposure of small mammals to ticks and rickettsiae in Atlantic Forest patches in the metropolitan area of Recife, North-eastern Brazil. Parasitology 139 (1), 83–91, https://doi.org/10.1017/S0031182011001740.

  13. Dunn, R.R., 2004. Recovery of faunal communities during tropical forest regeneration. Conserv. Biol. 18 (2), 302–309 (Accessed 12 August 2016) https://www.jstor.org/stable/3589207.

  14. Dixon, M., Metzger, J.P., Morgante, J.S., Zamudio, K.R., 2009. Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol. Conserv. 142 (8), 1560–1569, https://doi.org/10.1016/j.biocon.2008.11.016.

  15. Estavillo, C., Pardini, R., Rocha, P.L.B., 2013. Forest loss and the biodiversity threshold: an evaluation considering species habitat requirements and the use of matrix habitats. PLoS One 8 (12), 1–10, https://doi.org/10.1371/journal.pone.0082369.

  16. Estrada, A., Garber, P.A., Rylands, A.B., Roos, C., Fernandez-Duque, E., et al., 2017. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3 (1), 1–16, https://doi.org/10.1126/sciadv.1600946.

  17. Fahrig, L., Baudry, J., Brotons, L., Burel, F.G., Crist, T.O., Fuller, R.J., Sirami, C., Siriwardena, G.M., Martin, J.L., 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14 (2), 101–112, https://doi.org/10.1111/j.1461-0248.2010.01559.x.

  18. Flinday, C.S., Houlahan, J., 1997. Anthropogenic correlates of species richness in Southeastern Ontario wetlands. Conserv. Biol. 11, 1000–1009.

  19. Fonseca, G.A.B., Robinson, J.G., 1990. Forest size and structure: competitive and predatory effects on small mammal communities. Biol. Conserv. 53, 265–294.

  20. Gardner, A.L., 2007. Mammals of South America, Volume 1 - Marsupials, Xenarthrans, Shrews, and Bats. The University of Chicago Press Chicago and London, London.

  21. Gascon, C., Lovejoy, T.E., Bierregaard Jr., R.O., Lovejoy, T.E., Malcolm, J.R., 1999. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91 (2–3), 223–229, https://doi.org/10.1016/S0006-3207(99)00080-4.

  22. Geist, H.J., Lambin, E.F., 2002. Underlying Driving Forces of Tropical Deforestation: tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52 (2), 143–150, https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2.

  23. Gheler-Costa, C., Vettorazzi, C.A., Pardini, R., Verdade, L.M., 2012. The distribution and abundance of small mammals in agroecosystems of southeastern Brazil. Mammalia 76, 185–191, https://doi.org/10.1515/mammalia-2011-0109.

  24. Hammer, Ø., Harpper, D.A.T., Ryan, D., 2001. PAST: (1999) paleontological statistics software package for education and data analysis. Palaeontol. Electron. (Accessed 23 October 2016) https://palaeo-electronica.org/20011/past/past.pdf.

  25. Hass, Al., Kormann, U.G., Tscharntke, T., Clough, Y., Baillod, A.B., Sirami, C., Fahrig, L., Martin, J.L., Baudry, J., Bertrand, C., Bosch, J., Brotons, L., Burel, F., Georges, R., Giralt, D., Marcos-García, M.A., Ricarte, A., Siriwardena, G., Batáry, P., 2018. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. 285 (1872), 1–10, https://doi.org/10.1098/rspb.2017.2242.

  26. Heroldová, M., Bryja, J., Zejda, J., Tkadlec, E., 2007. Structure and diversity of small mammal communities in agriculture landscape. Agric. Ecosyst. Environ. 120 (2-4), 206–210, https://doi.org/10.1016/j.agee.2006.09.007.

  27. Holland, G.J., Bennett, J.F., 2007. Occurrence of small mammals in a fragmented landscape: the role of vegetation heterogeneity. Wildl. Res. 34 (5), 387–397, https://doi.org/10.1071/WR07061.

  28. Jordano, P., Galetti, M., Pizo, M.A., Silva, W.R., 2006. Ligando Frugivoria e Dispersão de Sementes à Biologia da Conservação (Accessed 12 June 2016) https://www.researchgate.net/publication/230801935_Ligando_Frugivoria_e_Dispersao_de_Sementes_a_Biologia_da_Conservacao.

  29. Jullien, M., Thiollay, J.M., 1996. Effect of rainforest disturbance and fragmentation: comparative changes of raptor community along natural and human-made gradients in French Guiana. J. Biogeogr. 34, 387–397, https://doi.org/10.1046/j.1365-2699.1996.00963.x.

  30. Laurance, W.F., 1994. Rain forest fragmentation and the structure of small mammal communities intropical Queensland. Biol. Conserv. 69 (1), 23–32, https://doi.org/10.1016/0006-3207(94)90325-5.

  31. Laurance, W.F., Ferreira, L.Y., Merona, J.R., Laurance, S.G., 1998. Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79, 2032–2040, https://doi.org/10.1890/0012-9658(1998)079[2032:RFFATD]2.0.CO;2.

  32. Laurance, W.F., Vasconcelos, H.L., 2009. Conseqüências ecológicas da fragmentação florestal na Amazônia. Oecologia Bras. 13 (3), 434–451, https://doi.org/10.4257/oeco.2009.1303.03.

  33. Laurance, W.F., 2010. Habitat destruction: death by a thousand cuts. In: Shodi, N.S., Ehrlich, P.R. (Eds.), Conservation Biology for All. Oxford University Press, pp. 73–87.

  34. Lins e Silva, A.C.B., 2010. Influência da área e da heterogeneidade de habitats na diversidade vegetal em fragmentos de floresta atlântica (Accessed 10 August 2015) http://livros01.livrosgratis.com.br/cp140629.pdf.

  35. Luza, A.L., Gonçalves, G.L., Pillar, V.D., Hartz, S.M., 2016. Processes related to habitat selection, diversity and niche similarity in assemblages of non-volant small mammals at grassland-forest ecotones. Braz. J. Nat. Conserv. 14 (2), 88–98, https://doi.org/10.1016/j.ncon.2016.09.003.

  36. Read, J.L., Moseby, K.E., 2001. Factors affecting pitfall capture rates of small ground vertebrates in arid South Australia. I. The influence of weather and moon phase on capture rates of reptiles. Wildl. Res. 28 (1), 53–60, https://doi.org/10.1071/WR99057.

  37. Nagendra, H., Munroeb, D.K., Southworth, J., 2004. From pattern to process: landscape fragmentation and the analysis of land use/land cover change. Agric. Ecosyst. Environ. 101 (2-3), 111–115, https://doi.org/10.1016/j.agee.2003.09.003.

  38. Nupp, E.T., Swihart, R.T.K., 2000. Landscape-level correlates of small-mammal assemblages in forest fragments of farmland. J. Mammal. 81 (2), 512–526, https://doi.org/10.1644/1545-1542(2000)081<0512:LLCOSM>2.0.CO;2.

  39. OECD/Fao, 2015. Perspectivas Agrícolas no Brasil: desafios daagriculturabrasileira. IOP Publishing Physics Web (Accessed 4 September 2017) www.agri-outlook.org

  40. Oliveira, F.F., Langguth, A., 2004. Pequenos mamíferos (Didelphimorphia e Rodentia) de Paraíba e Pernambuco, Brasil. Rev. Nord. Biol. 18 (2), 19–86.

  41. Paglia, A.P., Fonseca, G.A.B.D.A., Rylands, A.B., Herrmann, G., Aguiar, L.M.S., Chiarello, A.G., et al., 2012. Lista Anotada dos Mamíferos do Brasil / Annotated Check list of Brazilian Mammals, 2aedição/ 2nd edition. Occasional Papers in Conservation Biology, No. 6. Conservation International, Arlington.

  42. Pardini, R., 2004. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers. Conserv. 13, 2567–2586.

  43. Pardini, R., Souza, S.M., Braga-Neto, R., Metzger, J.P., 2005. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol. Conserv. 124 (2), 253–266, https://doi.org/10.1016/j.biocon.2005.01.033.

  44. Patton, J.L., Pardiñas, U.F.J., D’Elía, G., 2015. Mammals of South America, Volume 2 - Rodents. The University of Chicago Press Chicago and London, London.

  45. Ranganathan, J., Ranjit Daniels, R.J., Chandran, M.D.S., Ehrlicha, P.R., Dailya, G.C., 2008. Sustaining biodiversity in ancient tropical countryside. PNAS 105 (46), 17852–17854, https://doi.org/10.1073/pnas.0808874105.

  46. Rappole, J.H., Morton, E.S., 1985. Effects of habitat alteration on atropical avian forest community. Ornithol. Monogr. 36, 1013–1021, https://doi.org/10.2307/40168333.

  47. Remsen, J.V., Parker, T.A., 1983. Contribution of river-created habitats to bird species richness in Amazonia. Biotropica 15 (3), 223–231, https://doi.org/10.2307/2387833.

  48. Ribeiro, M.C., Martensen, A.C., Metzger, J.P., Ponzoni, F.J., Hirota, M.M., 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142 (6), 1141–1153, https://doi.org/10.1016/j.biocon.2009.02.021.

  49. Ribeiro, M.C., Martensen, A.C., Metzger, J.P., Tabarelli, M., Scarano, F., Fortin, M.J., 2011. The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots., https://doi.org/10.1007/978-3-642-20992-5_21.

  50. Rocha-Mendes, F., Mikich, S.B., Quadros, J., Pedro, W.A., 2010. Feeding ecology of carnivores (Mammalia, Carnivora) in Atlantic Forest remnants, Southern Brazil. Biota Neotrop. 10 (4), 21–30.

  51. Sanchez-Cordero, V., Martinez-Gallargo, R., 1998. Post dispersal fruit and seed removal by forest-dwelling rodents in a lowland rainforest in Mexico. J. Trop. Ecol. 14 (2), 139–151, https://doi.org/10.1017/S0266467498000121.

  52. Santos, J.P., Steinke, V.A., García-Zapata, M.T.A., 2016. Espaço e doença: mudanças antrópicas e a hantavirose / environment and disease: anthropic changes and hantavírus. Hygeia 12 (22), 62–71.

  53. São José Agroindustrial, IOP Publishing Physics Web. http://www.usinasaojose.com.br/pt/usina/institucional. (Acessed 13 April 2016) 2017. A Usina.

  54. Silva, H.C.H., Lins e Silva, A.C.B., Gomes, J.S., Rodal, M.J.N., 2008. The effect of internal and external edges on vegetation physiognomy and structure in a remnant of Atlantic lowland rainforest in Brazil. Biorem. Biodiv. Bioavail. 2 (1), 47–55.

  55. Silva, M.F.A., Dissertation 2015. Influência do relevo na fragmentação e estrutura da vegetação na Floresta Atlântica, sub-região Pernambuco. University Federal Rural of Pernambuco.

  56. Silveira, L.F., Olmos, F., Long, A.J., 2003. Birds in Atlantic Forest fragments in north-east Brazil. Cotinga 20, 32–46 (Acessed 20 June 2017) http://www.ib.usp.br/~lfsilveira/pdf/a_2003_birdsnortheastbrazil.pdf.

  57. SOS Mata Atlântica and INPE, 2018. Atlas dos remanescentes florestais da Mata Atlântica mapeamento dos sistemas costeiros (Acessed 10 November 2018) http://mapas.sosma.org.br/site_media/download/SOSMA_Atlas-da-Costa_Final.pdf.

  58. Stoate, C., Báldi, A., Beja, P., Boatman, N.D., Herzon, I., Van Doorn, A., Snoo, G.R., Rakosy, L., Ramwell, C., 2009. Ecological impacts of early 21st century agricultural change in Europe - a review. J. Environ. Manage. 91 (1), 22–46, https://doi.org/10.1016/jjenvman.2009.07.005.

  59. Tabarelli, M., Pinto, L.P., Silva, J.M.C., Hirota, M.M., Bedê, L.C., 2005. Desafios e oportunidades para a Conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade 1 (1), 132–138.

  60. Turner, I.M., Corllet, R.T., 1996. The conservation value of small, isolated fragments of low land tropical rainforest. Trends Ecol Evol. 11 (8), 330–333.

  61. Uezu, A., Metzger, J.P., Vielliard, J.M.E., 2005. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol. Conserv. 123 (4), 507–519, https://doi.org/10.1016/j.biocon.2005.01.001.

  62. Umetsu, F., Pardini, R., 2007. Small mammals in a mosaic of forest remnants and anthropogenic habitats-evaluating matrix quality in an Atlantic forest landscape. Landsc. Ecol. 22 (4), 517–530.

  63. Veloso, H.P., Góes-Filho, L., 1982. Classificação fisionômico-ecológica da vegetação neotropical. Boletins técnicos. Projeto Radambrasil 7.

  64. Verdade, L.M., Gheler-Costa, C., Penteado, M., Dotta, G., 2012. The impacts of sugarcane expansion on wildlife in the state of São Paulo, Brazil. J. Sustain. Bioenergy Syst. 2 (4), 138–144, https://doi.org/10.4236/jsbs.2012.24020.

  65. Vieira, E.M., Monteiro-Filho, E.L.A., 2003. Vertical stratification of small mammals in the Atlantic rain forest of southeastern Brazil. J. Trop. Ecol. 19 (05), 501–507, https://doi.org/10.1017/S0266467403003559.

  66. Vivian-Smith, G., 1997. Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J. Ecol. 85 (1), 71–82.

  67. Wijesinghe, M.R., Brooke’s, M.D., 2005. Impact of habitat disturbance on the distribution of endemic species of small mammals and birds in a tropical rain forest in Sri Lanka. J. Trop. Ecol. 21, 661–668.

Download references

Author information

Correspondence to Marina Falcão Rodrigues.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, M.F., de Oliveira, M.A.B. & Montes, M.A. Implications of an agricultural mosaic in small mammal communities. Mamm Biol 99, 19–26 (2019). https://doi.org/10.1016/j.mambio.2019.09.010

Download citation

Keywords

  • Atlantic Forest
  • Sugarcane
  • Richness
  • Abundance
  • Composition and assemblage