Advertisement

Mammalian Biology

, Volume 98, Issue 1, pp 91–101 | Cite as

Climate change and its potential impact on the conservation of the Hoary Fox, Lycalopex vetulus (Mammalia: Canidae)

  • Eliécer E. GutiérrezEmail author
  • Neander M. Heming
  • Gabriel Penido
  • Julio C. Dalponte
  • Ana Cristyna Reis Lacerda
  • Ricardo Moratelli
  • Jamile Moura de Bubadué
  • Leonardo Henrique da Silva
  • Mariana M. Wolf
  • Jader Marinho-Filho
Original investigation

Abstract

We aimed to assess the potential impact of climate change on the geographic distribution of areas holding suitable climatic conditions for the presence of Lycalopex vetulus, and to discuss the implications of such distribution for the conservation of the species. We employed correlative modeling analyses to infer the geographic distribution of climatically suitable conditions for the species on climatic scenarios for the present and for years 2050 (average for 2041–2060) and 2070 (average for 2061–2080). The data consisted of species occurrences and 5 bioclimatic variables containing interpolated and averaged information on seasonal variation of temperature and precipitation. Models were projected onto climatic scenarios employing three different global circulation models and two representative concentration pathways. For each of these scenarios, we quantified the expected changes in area (km2) holding suitable climatic conditions and how much of that area is expected to be within the current Brazilian system of protected areas. Our results reveal that climate change represents a major threat for the survival of L. vetulus by drastically reducing its habitat availability in a period of time no longer than five decades from now. Experimental physiological and behavioral studies are necessary to assess whether L. vetulus is able to adequately tolerate under climatic conditions different to those under which the species is currently present.

Keywords

Brazil Carnivora Cerrado Climatic suitability Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguiar, L.M.S., Bernard, E., Ribeiro, V., Machado, R.B., Jones, G., (2016). Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Glob. Ecol. Conserv. 5, 22–33.CrossRefGoogle Scholar
  2. Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., Anderson, R.P., 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545.CrossRefGoogle Scholar
  3. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information Theory, Akademiai Kiado, Budapest, pp. 267–281.Google Scholar
  4. Anderson, S., (1997). Mammals of Bolivia, taxonomy and distribution. Bull. Am. Mus. Nat. Hist. 231, 1–652.Google Scholar
  5. Anderson, R.P., Peterson, A.T., Gómez-Laverde, M., 2002. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16.CrossRefGoogle Scholar
  6. Anderson, R.P., Raza, A., (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393.CrossRefGoogle Scholar
  7. Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, CM., Dormann, C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R.B., Zimmermann, N.E., Rahbek, C., 2019. Standards for models in biodiversity assessments. Sci. Adv. 5, eaat4858. [see extensive supplementary material of this article].PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J., Villalobos, F., (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222, 1810–1819.CrossRefGoogle Scholar
  9. Bubadué, J., Cáceres, N., Dos Santos Carvalho, R., Meloro, C., (2016). Ecogeographical variation in skull shape of South-American canids: abiotic orbiotic processes? Evol. Biol. 43, 145–159.Google Scholar
  10. Beuchle, R., Grecchi, R.C., Shimabukuro, Y.E., Seliger, R., Eva, H.D., Sano, E., Achard, F., (2015). Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 58, 116–127.CrossRefGoogle Scholar
  11. Bocchiglieri, A., Mendonca, A.F., Henriques, R.P.B., 2010. Composition and diversity of medium and large size mammals in the Cerrado of central Brazil. Biota Neotrop 10, 169–176.CrossRefGoogle Scholar
  12. Boria, R.A., Olson, L.E., Goodman, S.M., Anderson, R.P., (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Modell. 275, 73–77.CrossRefGoogle Scholar
  13. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. New York, United States of America.Google Scholar
  14. Burnham, K.P., Anderson, D.R., (2004). Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304.CrossRefGoogle Scholar
  15. Cáceres, N.C., Bornschein, M.R., Lopes, W.H., Percequillo, A.R., (2007). Mammals of the Bodoquena Mountains, southwestern Brazil: an ecological and conservation analysis. Rev. Bras. Zool. 24, 426–435.CrossRefGoogle Scholar
  16. Cáceres, N.C., Hannibal, W., Freitas, D.R., Silva, E.L., Roman, C, Casella, J., 2010. Mammal occurrence and roadkill in two adjacent ecoregions (Atlantic Forest and Cerrado) in south-western Brazil. Zoologia 27, 709–717.CrossRefGoogle Scholar
  17. Carmignotto, A.P., Aires, C.C., (2011). Mamíferos não voadores (Mammalia) da Estacão Ecológica Serra Geral doTocantins. Biota Neotrop. 11, 313–328 [in Portuguese].CrossRefGoogle Scholar
  18. Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, CD., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333 (6045), 1024–1026.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cobos, M.E., Peterson, A.T., Barve, N., Osorio-Olvera, L., 2019. Kuenm: an R package for detailed development of ecological niche models using Maxent. Peer J 7, e6281,  https://doi.org/10.7717/peerj.6281.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Collevatti, R.G., Nabout, J.C., Diniz-Filho, J.A.F., 2011. Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genet. Genomes 7, 1237–1247.CrossRefGoogle Scholar
  21. Costa, C.H.N., Courtenay, O., 2003. A new record of the hoary fox Pseudalopex vetulus in north Brazil. Mammalia 67, 593–594.CrossRefGoogle Scholar
  22. Courtenay, O., Santana, E.W., Johnson, P.J., Vasconcelos, I.A.B., Vasconcelos, A.W., (1996). Visceral leishmaniasis in the hoary zorro Dusicyon vetulus: a case of mistaken identity. Trans. R. Soc. Trop. Med. Hyg. 90, 498–502.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dalponte, J.C., 1997. Diet of the hoary fox, Lycalopex vetulus, in Mato Grosso, central Brazil. Mammalia 61, 537–546.Google Scholar
  24. Dalponte, J.C., 2009. Lycalopex vetulus (Carnivora: canidae). Mamm. Species 847, 1–7.CrossRefGoogle Scholar
  25. Dalponte, J.C., Courtenay, O., 2004. In: Sillero-Zubiri, C., Hoffmann, M., Macdonald, D.W. (Eds.), Hoary Fox Pseudalopex vetulus (Lund, 1842). Pp. 72–76 in Canids: Foxes, Wolves, Jackals and Dogs. Status Survey and Conservation Action Plan. International Union for Conservation of Nature and Natural Resources/Species Survival Commission Canid Specialist Group, Gland, Switzerland.Google Scholar
  26. Dalponte, J., Courtenay, O., 2008. Lycalopex vetulus. In: IUCN 2015. The IUCN Red List of Threatened Species 2015, Available from:https://doi.org/www.iucnredlist.org[08 July 2018].Google Scholar
  27. Deane, L., 1956. Leishmaniose Visceral No Brasil: Estudos Sobre Reservatórios E Transmissores Realizados No Estado Do Ceará. Servico Nacional de Educacão Sanitária, Rio de Janeiro, Brazil [in Portuguese].Google Scholar
  28. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., (2011). A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57.CrossRefGoogle Scholar
  29. Fernandes, F.A.B., Costa, M.D., 2013. Mammalia, Carnivora, Canidae, Pseudalopex vetulus(Lund, 1842): First record for the Atlantic Forest, southern state of Minas Gerais, Brazil. Check List 9, 1603–1604.CrossRefGoogle Scholar
  30. Garcez, F.S., Master’s thesis 2015. Filogeografia E História Populacional De Lycalopex vetulus (Carnivora, Canidae), incluindo Sua Hibridacão Com L. Gymnocercus. Pontifícia Universidade Católica do Rio Grande do Sul [in Portuguese] https://doi.org/hdl.handle.net/10923/7711.
  31. Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C, Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.L., Zhang, M., (2011). The community climate system model version 4. J. Clim. 24, 4973–4991.CrossRefGoogle Scholar
  32. Gomes, L.P., Rocha, C.R., Brandão, R.A., Marinho-Filho, J., (2015). Mammal richness and diversity in Serra do Facão region, Southeastern Goiás state, central Brazil. Biota Neotrop. 15, 1–11 [in Portuguese].CrossRefGoogle Scholar
  33. Gutiérrez, E.E., Boria, R.A., Anderson, R.P., 2014. Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossums. Ecography 37, 741–753.CrossRefGoogle Scholar
  34. Gutiérrez, E.E., Heming, N.M., 2018. Introducing AIC Model Averaging in Ecological Niche Modeling: a Single-algorithm Multi-model Strategy to Account for Uncertainty in Suitability Predictions. https://doi.org/abs/1807.04346.Google Scholar
  35. Gutiérrez, E.E., Marinho-Filho, J., 2017. The mammalian faunas endemic to the Cerrado and the Caatinga. ZooKeys 644, 105–157.CrossRefGoogle Scholar
  36. Heming, N.M., Dambros, C., Gutiérrez, E.E., 2018. ENMwizard: AIC Model Averaging and Other Advanced Techniques in Ecological Niche Modeling Made Easy. https://doi.org/github.com/HemingNM/ENMwizard.Google Scholar
  37. Hetem, R.S., Fuller, A., Maloney, S.K., Mitchell, D., 2014. Responses of large mammals to climate change. Temperature 1 (2), 115–127.CrossRefGoogle Scholar
  38. Hijmans, R.J., 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679–688.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978.CrossRefGoogle Scholar
  40. Jezkova, T., Olah-Hemmings, V., Riddle, B.R., (2011). Niche shifting in response to warming climate after the last glacial maximum: inference from genetic data and niche assessments in the chisel-toothed kangaroo rat (Dipodomys microps). Glob. Chang. Biol. 17, 3486–3502.CrossRefGoogle Scholar
  41. Jezkova, T., Wiens, J.J., 2016. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 283 (1843), 2016–2104.Google Scholar
  42. Juarez, K.M., Marinho-Filho, J., (2002). Diet, habitat use, and home ranges of sympatric canids in central Brazil. J. Mammal. 83, 925–933.CrossRefGoogle Scholar
  43. K-1 Model Developers, 2004. K-1 Coupled GCM (MIROC) Description, K-1 Technical Report No.1. Center for Climate System Research. National Institute for Environmental Studies, and Frontier Research Center for Global Change. University of Tokyo, Available from: https://doi.org/ccsr.aori.u-tokyo.ac.jp/hasumi/miroc_description.pdf. [26 April 2017].Google Scholar
  44. Klink, C.A., Machado, R.B., (2005). Conservation of the brazilian cerrado. Conserv. Biol. 19, 707–713.CrossRefGoogle Scholar
  45. Kubiak, B.B., Gutiérrez, E.E., Galiano, D., Maestri, R., Freitas, T.R., 2017. Can niche modeling and geometric morphometrics document competitive exclusion in a pair of subterranean rodents (genus Ctenomys) with tiny parapatric distributions? Sci. Rep. 7, 16283.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Langguth, A., 1975. In: Fox, M.W. (Ed.), Ecology and Evolution in the South American Canids. Pp. 192–206 in The Wild Canids: Their Systematics, Behavioral Ecology and Evolution. Van Nostrand Reinhold Company, New York, United States of America.Google Scholar
  47. Lemos, F.G., Azevedo, F.C., Beisiegel B. de, M., Jorge, R.P.S., De Paula, R.C., Rodrigues, F.H.G., Rodrigues L. de, A., 2013. Avaliacão do risco de extincão da Raposa-do-campoLycalopexvetulus (Lund, 1842) no Brasil. Biodiversidade Brasileira 1, 160–171 [in Portuguese].Google Scholar
  48. Lucherini, M., Vidal, E.M.L., 2008. Lycalopex gymnocercus (Carnivora: canidae). Mamm. Species 820, 1–9.CrossRefGoogle Scholar
  49. Marini, M.A., Barbet-Massin, M., Lopes, L.E., Jiguet, F., 2009a. Major current and future gaps of Brazilian reserves to protect Neotropical savanna birds. Biol. Conserv. 142, 3039–3050.CrossRefGoogle Scholar
  50. Marini, M.A., Barbet-Massin, M., Lopes, LE., Jiguet, F., 2009b. Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna. Conserv. Biol. 23, 1558–1567.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J.F., Matsumoto, K., et al., 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241.CrossRefGoogle Scholar
  52. Moreno-Amat, E., Mateo, R.G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J.C., García-Amorena, I., (2015). Impact of model complexity on cross-temporal transferability in Maxent species distribution models: an assessment using paleobotanical data. Ecol. Modell. 312, 308–317.CrossRefGoogle Scholar
  53. MPI, Available from:https://doi.org/www.mpimet.mpg.de/en/science/models/mpi-esm/ [26 April 2017] 2017. Max-Planck-Institut Für Meteorologie] Earth System Model.
  54. Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., Anderson, R.P., (2014). ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205.CrossRefGoogle Scholar
  55. Olifiers, N., Delciellos, A.C., (2014). New record of Lycalopex vetulus (Carnivora, Canidae) in northeastern Brazil. Oecol. Aust. 17, 533–537.CrossRefGoogle Scholar
  56. Owens, H.L., Campbell, L.P., Dornak, L.L., Saupe, E.E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, CM., Myers, C.E., Peterson, A.T., (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Modell. 263, 10–18.CrossRefGoogle Scholar
  57. Pereira, L.G., Geise, L., (2009). Non-flying mammals of chapada diamantina (Bahia, Brazil). Biota Neotro. 9, 185–196.CrossRefGoogle Scholar
  58. Perini, F.A., Russo, CAM., Schrago, C.G., (2010). The evolution of South American endemic canids: a history of rapid diversification and morphological parallelism. J. Evol. Biol. 23, 311–322.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Peterson, A.T., Papes, M., Soberón, J., 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 213 (1), 63–72.CrossRefGoogle Scholar
  60. Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M., Aráujo, M.B., 2011. Ecological Niches and Geographic Distributions. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
  61. Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E., 2017. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893.CrossRefGoogle Scholar
  62. Phillips, S.J., Anderson, R.P., Schapire, R.E., (2006). Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259.CrossRefGoogle Scholar
  63. Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175.CrossRefGoogle Scholar
  64. Phillips, S.J., Dudík, M., Schapire, R.E., 2018. Maxent Software for Modeling Species Niches and Distributions. American Museum of Natural History, New York, United States of America https://doi.org/biodiversityinformatics.amnh.org/open_source/maxent/.Google Scholar
  65. Radosavljevic, A., Anderson, R.P., (2014). Making better Maxent models of species distributions: complexity, overfitting, and evaluation. J. Biogeogr. 41, 629–643.CrossRefGoogle Scholar
  66. Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., 2017. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929.CrossRefGoogle Scholar
  67. Rocha, E.C., Silva, E., Feio, R.N., Martins, S.V., Lessa, G., (2008). Densidade populacional de raposa-do-campo Lycalopex vetulus (Carnivora, Canidae) em áreas de pastagem e campo sujo, Campinápolis, Mato Grosso, Brasil. Iheringia Ser. Zool. 98, 78–83.CrossRefGoogle Scholar
  68. Santos, T.G., Spies, M.R., Kopp, K., Trevisan, R., Cechin, S.Z., (2008). Mammals of the campus of the universidade federal de santa maria, Rio Grande do sul. Brazil. Biota Neotrop. 8, 125–131.CrossRefGoogle Scholar
  69. Simon, L.M., Oliveira, G., Barreto, B.S., Nabout, J.C., Rangel, T.F., Diniz-Filho, J.A., 2013. Effects of global climate changes on geographical distribution patterns of economically important plant species in Cerrado. Rev. árvore 37, 267–274.CrossRefGoogle Scholar
  70. Tchaicka, L., Freitas, T.R.O.D., Bager, A., Vidal, S.L., Lucherini, M., Iriarte, A., Novaro, A., Geffen, E., Garcez, F.S., Johnson, W.E., Wayne, R.K., (2016). Molecular assessment of the phylogeny and biogeography of a recently diversified endemic group of South American canids (Mammalia: carnivora: canidae). Genet. Mol. Biol. 39, 442–451.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Valavi, R., Elith, J., Lahoz-Monfort, J.J., Guillera-Arroita, G., 2018. blockCV: an R package for generating spatially or environmentally separated folds fork-fold cross-validation of species distribution models. bioRxiv, 357798.Google Scholar
  72. Vasconcelos, T.S., (2014). Tracking climatically suitable areas for an endemic Cerrado snake under climate change. Nat. Conserv. 12, 47–52.CrossRefGoogle Scholar
  73. Veloz, S.D., (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290–2299.CrossRefGoogle Scholar
  74. Vieira, C., 1946. Carnívoros do estado de São Paulo. Arquivos de Zoologia São Paulo 5, 1–553 [in Portuguese].Google Scholar
  75. Warren, D.L., Matzke, N.J., Iglesias, T.L., BioRxiv preprint 2019. Evaluating species distribution models with discrimination accuracy is uninformative for many applications.,  https://doi.org/10.1101/684399.Google Scholar
  76. Warren, D.L., Seifert, S.N., (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Warren, D.L., (2012). In defense of niche modeling. Trends Ecol. Evol. 27, 497–500.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Warren, D.L., Wright, A.N., Seifert, S.N., Shaffer, H.B., (2014). Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 20, 334–343.CrossRefGoogle Scholar
  79. Weber M. de M., Roman, C., Cáceres, N.C., 2013. Mamíferos do Rio Grande do Sul. Editora UFSM. Rio Grande do Sul, Brazil [in Portuguese].Google Scholar
  80. Kuhn, M., 2019. caret: Classification and Regression Training. https://doi.org/CRAN.R-project.org/package=caret.Google Scholar
  81. Zrzavy, J., Duda, P., Robovsky, J., Okrřinová, I., Ricánková, V.P., (2018). Phylogeny of the Caninae (Carnivora): combining morphology, behaviour, genes and fossils. Zool. Scr. 47, 373–389.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Eliécer E. Gutiérrez
    • 1
    • 2
    Email author
  • Neander M. Heming
    • 2
    • 3
  • Gabriel Penido
    • 2
  • Julio C. Dalponte
    • 4
  • Ana Cristyna Reis Lacerda
    • 2
  • Ricardo Moratelli
    • 5
    • 6
  • Jamile Moura de Bubadué
    • 1
  • Leonardo Henrique da Silva
    • 7
    • 8
  • Mariana M. Wolf
    • 9
  • Jader Marinho-Filho
    • 2
  1. 1.Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Programa de Pós-Graduação em Zoologia, Departamento de ZoologiaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Programa de Pós-Graduação Ecologia e Conservacão da Biodiversidade, Departamento de Ciências BiológicasUniversidade Estadual de Santa Cruz, Laboratório de Ecologia Aplicada à ConservacãoIlhéusBrazil
  4. 4.Instituto de Ciências Naturais, Humanas e SociaisUniversidade Federal de Mato GrossoSinopBrazil
  5. 5.Fundacão Oswaldo CruzFiocruz Mata AtlânticaRio de JaneiroBrazil
  6. 6.Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de BiologiaUniversidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
  7. 7.Departamento de Ecologia, Instituto de BiociênciasUniversidade estadual Paulista “Júlio de Mesquita Filho”, UNESPRio ClaroBrazil
  8. 8.Instituto de Pesquisas Ecológicas (IPÊ)Nazaré PaulistaBrazil
  9. 9.Instituto Nacional de Pesquisas EspaciaisUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations