Advertisement

Mammalian Biology

, Volume 98, Issue 1, pp 1–10 | Cite as

Biodiversity lost: The phylogenetic relationships of a complete mitochondrial DNA genome sequenced from the extinct wolf population of Sicily

  • Stefano RealeEmail author
  • Ettore Randi
  • Valentina Cumbo
  • Ignazio Sammarco
  • Floriana Bonanno
  • Antonio Spinnato
  • Salvatore Seminara
Original investigation

Abstract

Using next-generation sequencing, we obtained for the first time a complete mitochondrial DNA genome from a museum specimen of the extinct wolf (Canis lupus) population of the island of Sicily (Italy). Phy¬logenetic analyses indicated that this genome, which was aligned with a number of historical and extant wolf and dog mitogenomes sampled worldwide, was closely related to an Italian wolf mtDNA genome (the observed proportion of nucleotide sites at which the two sequences are different was p= 0.0012), five to seven times shorter than divergence among Sicilian and any other known wolf mtDNA genomes (p range = 0.0050 - 0.0070). Sicilian and Italian mitogenomes joined a basal clade belonging to the mtDNA haplogroup-2 of ancient western European wolf populations (Pilot et al., 2010). Bayesian calibration of divergence times indicated that this clade coalesced at MRCA= 13.400 years (with 95% HPD = 4000 -21.230 years). These findings suggest that wolves probably colonized Sicily from southern Italy towards the end of the last Pleistocene glacial maximum when the Strait of Messina was almost totally dry. Additional mtDNA and genomic data will further clarify the origin and population dynamics before the extinction of wolves in Sicily.

Keywords

Sicilian wolf Canis lupus Complete mtDNA genome Next-generation sequencing Island extinctions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, R.K., Kivisild, T., Ramadevi, J., Singh, L., 2007. Mitochondrial DNA coding region sequences support the phylogenetic distinction of two Indian wolf species. J. Zoolog. Syst. Evol. Res. 45, 163–172.CrossRefGoogle Scholar
  2. Altobello, G., 1921. Mammiferi. IV. I Carnivori (Carnivora). Fauna Dell’Abruzzo E Del Molise. Colitti, Campobasso, pp.61.Google Scholar
  3. Altschul, S.F., Gish, W., Miller, W., Myer, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Angelici, F.M., Rossi, L., 2018. A new subspecies of grey wolf (Carnivora, Canidae), recently extinct, from Sicily, Italy. BioRxiv,  https://doi.org/10.1101/320655, preprint first posted online May 11.Google Scholar
  5. Angelici, F.M., Ciucani, M.M., Angelini, S., Annesi, F., Caniglia, R., Castiglia, R., Fabbri, E., Galaverni, M., Palumbo, D., Ravegnini, G., Rossi, L., Siracusa, A.M., Cilli, E., 2019. The Sicilian wolf: genetic identity of a recently extinct insular population. BioRxiv,  https://doi.org/10.1101/453365, preprint.Google Scholar
  6. Antonioli, F., Lo Presti, V., Morticelli, M.G., Bonfiglio, L., Mannino, M.A., Palombo, M.R., Tonielli, R., 2014. Timing of the emergence of the Europe-Sicily bridge (40-17 cal ka BP) and its implications for the spread of modern humans. Geological Society, London 411 (1), 111–144,  https://doi.org/10.1144/sp411.1, Special Publications.Google Scholar
  7. Anzidei, A.P., Bulgarelli, G.M., Catalano, P., Cerilli, E., Gallotti, R., Lemorini, C., Milli, S., Palombo, M.R., Pantano, W., Santucci, E., 2012. Ongoing research at the late Middle Pleistocene site of la Polledrara di Cecanibbio (central Italy), with emphasis on human-elephant relationships. Quat. Int. 255, 171–187.CrossRefGoogle Scholar
  8. Chapron, G., Kaczensky, P., Linnell, J.D.C., von Arx, M., Huber, D., Andrén, H., López-Bao, J.V., Adamec, M., Álvares, F., Anders, O., Balciauskas, L., Balys, V., Bedő, P., Bego, F., Blanco, J.C., Breitenmoser, U., Brøseth, H., Bufka, L., Bunikyte, R., Ciucci, P., Dutsov, A., Engleder, T., Fuxjäger, C., Groff, C., Holmala, K., Hoxha, B., Iliopoulos, Y., Ionescu, O., Jeremic, J., Jerina, K., Kluth, G., Knauer, F., Kojola, I., Kos, I., Krofel, M., Kubala, J., Kunovac, S., Kusak, J., Kutal, M., Liberg, O., Majic, A., Männil, P., Manz, R., Marboutin, E., Marucco, F., Melovski, D., Mersini, K., Mertzanis, Y., Mysłajek, R.W., Nowak, S., Odden, J., Ozolins, J., Palomero, G., Paunovic, M., Persson, J., Potocnik, H., Quenette, P.Y., Rauer, G., Reinhardt, I., Rigg, R., Ryser, A., Salvatori, V., Skrbinsek, T., Stojanov, A., Swenson, J.E., Szemethy, L, Trajce, A., Tsingarska-Sedefcheva, E., Vánˇa, M., Veeroja, R., Wabakken, P., Wölfl, M., Wölfl, S., Zimmermann, F., Zlatanova, D., Boitani, L., 2014. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Scienc. 346, 1517–1519.CrossRefGoogle Scholar
  9. Ballantyne, K.N., Salemi, R., Guarino, F., Pearson, J.R., Garlepp, D., Fowler, S., van Oorschot, R.A.H., 2015. DNA contamination minimisation - finding an effective cleaning method. Aust. J. Forensic Sci. 47 (4), 428–439,  https://doi.org/10.1080/00450618.2015.1004195.CrossRefGoogle Scholar
  10. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5), 455–477.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bjornerfeldt, S., Webster, M.T., Vilà, C., 2006. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res. 16, 990–994.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bogenhagen, D., Clayton, D.A., 1974. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 249, 7991–7995.PubMedPubMedCentralGoogle Scholar
  13. Boitani, L., 1984. Genetic considerations on wolf conservation in Italy. Boll. Zool. 51, 367–373.CrossRefGoogle Scholar
  14. Ciucci, P., Boitani, L., 2003. Canis lupus, Linnaeus, 1758. In: Boitani, L., Lovari, S., Vigna Taglianti, A. (Eds.), Fauna d’Italia. Mammalia III. Carnivora - Artiodactyla. Calderini, Bologna, pp. 20–47.Google Scholar
  15. Drummond, A.J., Rambaut, A., 2007. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Drummond, A.J., Ho, S.Y., Phillips, M.J., Rambaut, A., 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dufresnes, C., Miquel, C., Remollino, N., Biollaz, F., Salamin, N., Taberlet, P., Fumagalli, L., 2018. Howling from the past: historical phylogeography and diversity losses in European grey wolves. Proc. Biol. Sci. 285 (1884),  https://doi.org/10.1098/rspb.2018.1148.
  19. Fritz, U., Fattizzo, T., Guicking, D., Tripepi, S., Pennisi, M.G., Lenk, P., Joger, U., Wink, M., 2005. A new cryptic species of pond turtle from southern Italy, the hottest spot in the range ofthe genus Emys (Reptilia, Testudines, Emydidae). Zoologica Scripta 34, 351–371.CrossRefGoogle Scholar
  20. Gill, M.S., Lemey, P., Nuno, R., Faria, N.R., Rambaut, A., Shapiro, B., Suchard, M.A., 2013. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gómez-Sánchez, D., Olalde, I., Sastre, N., Ensenñat, C., Carrasco, R., Marques-Bonet, T., Lalueza-Fox, C., Leonard, J.A., Vilà, C., Ramírez, O., 2018. On the path to extinction: inbreeding and admixture in a declining grey wolf population. Mol. Ecol. 27, 3599–3612,  https://doi.org/10.1111/mec.14824.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G., 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29 (8), 1072–1075,  https://doi.org/10.1093/bioinformatics/btt086.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hasegawa, M., Kishino, H., Yano, T., 1985. Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22 (2), 160–174.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ishiguro, N., Inoshim, Y., Shigehara, N., 2009. Mitochondrial DNA analysis ofthe Japanese wolf (Canis lupus hodophilax Temminck, 1839) and comparison with representative wolf and domestic dog haplotypes. Zool. Sci. 26, 765–770,  https://doi.org/10.2108/zsj.26.765.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P., Orlando, L., 2013. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29 (13), 1682–1684,  https://doi.org/10.1093/bioinformatics/btt193.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kim, K.S., Lee, S.E., Jeong, H.W., Ha, J.H., 1998. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol. Phylogenet. Evol. 10, 210–220.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Koblmuller, S., Vilà, C., Lorente-Galdos, B., Dabad, M., Ramirez, O., Marques-Bonet, T., Wayne, R.K., Leonard, J.A., 2016. Whole mitochondrial genomes illuminate ancient intercontinental dispersals of grey wolves (Canis lupus). J. Biogeogr. 43, 1728–1738,  https://doi.org/10.1111/jbi.12765.CrossRefGoogle Scholar
  29. Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGAX: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.PubMedPubMedCentralCrossRefGoogle Scholar
  30. La Mantia, T., Cannella, Z., 2008. Presenza storica dei grossi mammiferi in sicilia. In: 87–112 Atlante Della Biodiversità Della Sicilia: Vertebrati Terrestri. Studi e Ricerch. 6, Arpa Sicilia, Palermo, pp. 536.Google Scholar
  31. Leonard, J., Vilà, C., Wayne, R.K., 2005. Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis lupus). Mol. Ecol. 14 (1), 9–17,  https://doi.org/10.1111/j.1365-294X.2004.02389.x.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Li, H., Durbin, R., 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26 (5), 589–595,  https://doi.org/10.1093/bioinformatics/btp698.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009. 1000 Genome Project Data Processing Subgroup. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatic. 25, 2078–2079 [PMID: 19505943].CrossRefGoogle Scholar
  34. Li, H., Xiang-Yub, J., Daib, G., Gub, Z., Ming, C, Yang, Z., Ryder, O.A., Li, W.H., Fu, Y.X., Zhang, Y.P., 2016. Large numbers of vertebrates began rapid population decline in the late 19th century. PNAS 113 (49), 14079–14084,  https://doi.org/10.1073/pnas.1616804113.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Linnell, J., Salvatori, V., Boitani, L., 2008. Guidelines for population level management plans for large carnivores in Europe. In: A Large Carnivore Initiative for Europe Report Prepared for the European Commission (contract 070501/2005/424162/MAR/B2).Google Scholar
  36. Loog, L., Thalmann, O., Mikkel-Holger, S., Sinding, M.H.S., Schuenemann, V.J., Perri, A., Germonpré, M., Bocherens, H., Witt, K.E., Samaniego Castruita, J.A., Velasco, M.S., Lundstrøm, I.K.C., Wales, N., Sonet, G., Frantz, L., Schroeder, H., Budd, J., Jimenez, E.L., Fedorov, S., Gasparyan, B.W., Kandel, A.W., Láznicková-Galetová, M., Napierala, H., Uerpmann, H.P., Nikolskiy, P.A., Pavlova, E.Y., Pitulko, V.V., Herzig, K.H., Malhi, R.S., Willerslev, E., Hansen, A.J., Dobney, K., Gilbert, M.T.P., Krause, J., Larson, G., Eriksson, A., Manica, A., 2018. Modern wolves trace their origin to a late Pleistocene expansion from Beringia. BioRxiv,  https://doi.org/10.1101/370122, Posted July 18. This article is a preprint and has not been peer-reviewed.Google Scholar
  37. Lucchini, A., Galov, E., Randi, E., 2004. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines. Mol. Ecol. 13 (3), 523–536,  https://doi.org/10.1046/j.1365-294X.2004.02077.x.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Matsumura, S., Inoshima, Y., Ishiguro, N., 2014. Reconstructing the colonization history of lost wolf lineages by the analysis of the mitochondrial genome. Mol. Phylogenet. Evol. 80, 105–112,  https://doi.org/10.1016/j.ympev.2014.08.004.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Minà Palumbo, F., 1868. Catalogo dei mammiferi della Sicilia. Annali di Agricoltura Siciliana 12 (serie 2), 3–123.Google Scholar
  40. Montana, Luca, Caniglia, Romolo, Galaverni, Marco, Fabbri, Elena, Ahmed, Atidje, Bolfíková, BarboraCerná, Czarnomska, Sylwia D., Galov, Ana, Godinho, Raquel, Hindrikson, Maris, Hulva, Pavel, Jedrzejewska, Bogumiła, Jelencic, Maja, Kutal, Miroslav, Saarma, Urmas, Skrbinsek, Tomaz, Randi, Ettore, 2017. Combining phylogenetic and demographic inferences to assess the origin of the genetic diversity in an isolated wolf population. PLoS One,  https://doi.org/10.1371/journal.pone.0176560.Google Scholar
  41. Nei, M., Kumar, S., 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.Google Scholar
  42. Nguyen, Lam-Tung, Schmidt, Heiko A., von Haeseler, Arndt, Minh, Bui Quang, 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274,  https://doi.org/10.1093/molbev/msu300.CrossRefGoogle Scholar
  43. Pasa, A., 1959. Alcuni caratteri delle mammalofaune sicule. Ricerche sulla fauna appenninica. Mem. Mus. Civ. St. Nat. Veron. 7, 247–258.Google Scholar
  44. Picardi, E., Pesole, G., 2012. Mitochondrial genomes gleaned from human whole-exome sequencing. Nat. Method. 9, 523–524.CrossRefGoogle Scholar
  45. Pilot, M., Greco, C., von Holdt, B.M., Jedrzejewska, B., Randi, E., Je˛drzejewski, W., Sidorovich, V.E., Ostrander, E.A., Wayne, R.K., 2014. Genome-wide signatures of population bottlenecks and diversifying selection in European wolves. Heredity 112 (4), 428–442,  https://doi.org/10.1038/hdy.2013.122.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Pilot, M., Branicki, W., Jedrzejewsk, W., Goszczynski, J., Jedrzejewska, B., Dykyy, I., Shkvyrya, M., Tsingarska, E., 2010. Phylogeographic history of grey wolves in Europe. BMC Evol. Biol. 10,  https://doi.org/10.1186/1471-2148-10-104.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Pratesi, F., 1978. Esclusi dall’arca: animali estinti e in via di estinzione in Italia. Arnoldo Mondadori Editore Spa, Milano, 32–43.Google Scholar
  48. Rambaut, A., 2014. FigTree v1.4.2, A Graphical Viewer of Phylogenetic Trees, Available from https://doi.org/tree.bio.ed.ac.uk/software/figtree/.Google Scholar
  49. Randi, E., 2011. Genetics and conservation of wolves Canis lupus in Europe. Mammal Rev. 41 (2), 99–111,  https://doi.org/10.1111/j.1365-2907.2010.00176.x.CrossRefGoogle Scholar
  50. Randi, E., Hulva, P., Fabbri, E., Galaverni, M., Galov, A., Kusak, J., Bigi, D., Cerná Bolfíková, B., Smetanová, M., Caniglia, R., 2014. Multilocus detection of Wolf x dog hybridization in Italy, and guidelines for marker selection. PlosOne (January),  https://doi.org/10.1371/journal.pone.0086409.Google Scholar
  51. Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P., 2011. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedPubMedCentralGoogle Scholar
  53. Schubert, M., Lindgreen, S., Orlando, L., 2016. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9 (1). 88,  https://doi.org/10.1186/s13104-016-1900-2.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Sotnikova, M., Rook, L., 2010. Dispersal of the canini (Mammalia, Canidae: caninae) across Eurasia during the late miocene to early pleistocene. Quat. Int. 212 (2), 86–97.CrossRefGoogle Scholar
  55. Stöck, M., Sicilia, A., Belfiore, N.M., Buckley, D., Lo Brutto, S., Lo Valvo, M., Arculeo, M., 2008. Post-Messinian evolutionary relationships across the Sicilian channel: mitochondrial and nuclear markers link a new green toad from Sicily to African relatives. BMC Evol. Biol. 8 (56),  https://doi.org/10.1186/1471-2148-8-562008.
  56. Stoneking, M., 2000. Hypervariable sites in the mtDNA control region are mutational hotspots. Am. J. Hum. Genet. 67, 1029–1032, pmid:10968778.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Tamura, K., Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.PubMedPubMedCentralGoogle Scholar
  58. Thalmann, O.B., Shapiro, B., Cui, P., Schuenemann, V.J., Sawyer, S.K., Greenfield, D.L., Germonprè, M.B., Sablin, M.V., Lopez-Giraldez, F., Domingo-Roura, X., Napierala, H., Uerpmann, H.P., Loponte, D.M., Acosta, A.A., Giemsch, L., Schmitz, R.W., Worthington, B., Buikstra, J.E., Druzhkova, A., Graphodatsky, A.S., Ovodov, N.D., Wahlberg, N., Freedman, A.H., Schweizer, R.M., Koepfli, K.P., Leonad, J.A., Meyer, M., Krause, J., Paabo, S., Green, R.E., Wayne, R.K., 2013. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Scienc. 342, 871–874.CrossRefGoogle Scholar
  59. Yang, Z., 1995. A space-time process model for the evolution of DNA sequences. GENETICS 139 (February (2), 993–1005.PubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Stefano Reale
    • 1
    Email author
  • Ettore Randi
    • 2
    • 3
  • Valentina Cumbo
    • 1
  • Ignazio Sammarco
    • 1
  • Floriana Bonanno
    • 1
  • Antonio Spinnato
    • 1
  • Salvatore Seminara
    • 1
  1. 1.Experimental Zooprophylactic Institute of Sicily “A. M’irri”PalermoItaly
  2. 2.Department of BiologicalGeological and Environmental Sciences, University of BolognaBolognaItaly
  3. 3.Faculty of Engineering and Science, Department of Chemistry and BioscienceUniversity of AalborgAalborgDenmark

Personalised recommendations