No evidence for recent introgressive hybridization between the European and Siberian roe deer in Poland
- 1 Downloads
Abstract
Wildlife translocations increase the rate of introgressive hybridization between closely related species. In this study, we investigated the population genetic structure of the European roe deer (Capreolus capreo-lus) in Poland, affected by widespread ancient mtDNA introgression from Siberian roe deer (C. pygargus), for signs of recent human-mediated admixture. We analysed two nuclear gene sequences (FPGT and LRRIQ3) and 10 microsatellite loci in 258 European roe deer and 78 introgressed individuals (C. capreolus with mtDNA of C. pygargus) collected from 16 populations from Poland. Eighteen Siberian roe deer from Russia were also genotyped. Population genetic structure, assessed using Bayesian analysis and Principal Coordinate Analysis, indicated the existence of one genetic cluster in the European roe deer in Poland and gave no evidence for recent introgression in nuclear markers. Measures of genetic diversity for pure C. capreolus and introgressed individuals did not differ, while species lineages exhibited significant high genetic differentiation from one another (FST = 0.271; P< 0.001). The discordance between previous mtDNA results and the present study based on nuclear markers confirms the impact of ancient natural hybridization process on the genetic structure of European roe deer populations in Poland.
Keywords
Capreolus sp Genetic structure Introgressive hybridization Microsatellites TranslocationsPreview
Unable to display preview. Download preview PDF.
References
- Allendorf, F.W., Leary, R.F., Spruell, P., Wenburg, J.K., 2001. The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol., 16, 613–622.CrossRefGoogle Scholar
- Currat, M., Ruedi, M., Petit, R.J., Excoffier, L., 2008. The hidden side of invasions: massive introgression by local genes. Evolution, 62, 1908–1920.PubMedGoogle Scholar
- Danilkin, A.A., Hewison, A.J.M., 1996. Behavioural Ecology of Siberian and European Roe Deer. Chapman and Hall, London.Google Scholar
- Danilkin, A.A., Plakhina, DA, Zvychaynaya, E.Y., Domnich, A.V., Kholodova, M.V., Sorokin, P.A., et al., 2017. Siberian roe deer (Capreolus pygargus Pallas, 1771) in Ukraine: analysis of the mitochondrial and nuclear DNA. Biol. Bul., 44, 575–583.CrossRefGoogle Scholar
- Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14 (8), 2611–2620.CrossRefGoogle Scholar
- Excoffier, L., Lischer, H.E.L., 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res., 10, 564–567.CrossRefGoogle Scholar
- Gleiss, H.G.W., 1967. Unter Robben, Gnus und Tigerschlangen. Chronik des Zoologischen Gartens Breslau 1865–1965. Natura et Patria Verlag, Wedel, Germany.Google Scholar
- Goudet, J., 1995. FSTAT: a computer program to calculate F-statistics. J. Hered., 86, 485–486.CrossRefGoogle Scholar
- Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser., 41, 95–98.Google Scholar
- Hornbeck, G.E., Mahoney, J.M., 2000. Introgressive hybridization of mule deer and white-tailed deer in southwestern Alberta. Wild. Soc. Bull., 28, 1012–1015.Google Scholar
- Iacolina, L., Corlatti, L., Buzan, E., Safner, T., Sprem, N., 2018. Hybridization in European ungulates: an overview of the current status, causes, and consequences. Mamm. Rev., https://doi.org/10.1111/mam.12140.Google Scholar
- Kalinowski, S.T., Taper, M.L., Marshall, T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol., 16, 1099–1106.CrossRefGoogle Scholar
- Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.CrossRefGoogle Scholar
- Lorenzini, R., Garofalo, L., Qin, X., Voloshina, I., Lovari, S., 2014. Global phylogeography of the genus Capreolus (Artiodactyla: cervidae), a Palearctic meso-mammal. Zool. J. Linn. Soc., 170, 209–221.CrossRefGoogle Scholar
- Markov, G., Zvychaynaya, E., Danilkin, A., Kholodova, M., Sugar, L., 2016. Genetic diversity and phylogeography of roe deer (Capreolus capreolus L.) in different biogeographical regions in Europe. Compt. Rend. Acad. Bulg. Sci., 69, 579–584.Google Scholar
- Matosiuk, M., Borkowska, A., Swislocka, M., Mirski, P., Borowski, Z., Krysiuk, K., et al., 2014a. Unexpected population genetic structure of European roe deer in Poland: an invasion of the mtDNA genome from Siberian roe deer. Mol. Ecol., 23, 2559–2572.CrossRefGoogle Scholar
- Matosiuk, M., Sheremetyeva, I.N., Sheremetyev, I.S., Saveljev, A.P., Borkowska, A., 2014b. Evolutionary neutrality of mtDNA introgression: evidence from complete mitogenome analysis in roe deer. J. Evol. Biol., 27, 2483–2494.CrossRefGoogle Scholar
- McDevitt, A.D., Edwards, C.J., OToole, P., O’Sullivan, P., O’Reilly, C., Carden, R.F., 2009. Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mamm. Biol., 74, 263–273.CrossRefGoogle Scholar
- Olano-Marin, J., Plis, K., Sönnichsen, L., Borowik, T., Niedzialkowska, M., Jėdrzejewska, B., 2014. Weak population structure in European roe deer (Capreolus capreolus) and evidence of introgressive hybridization with Siberian roe deer (C. pygargus) in northeastern Poland. PLoS One 9 (10), e109147.Google Scholar
- Pavlov, M.P., 1999. Akklimatizatsia okhotnich’e-promylovykh zverei i ptits v SSSR. Chast’ 3. Kopytnye (Acclimation of game mammals and birds in the Soviet Union: part 3. Ungulates). Russian Research Institute of Game Management and Fur Farming. In: Kirov [in Russian].Google Scholar
- Peakall, R., Smouse, P.E., 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes, 6, 288–295.CrossRefGoogle Scholar
- Plakhina, DA., Zvychainaya, E.Y., Kholodova, M.V., Danilkin, A.A., 2014. Identification of European (Capreolus capreolus L.) and Siberian (C Pygargus Pall.) roe deer hybrids by microsatellite marker analysis. Russ. J. Genet., 50, 757–762.CrossRefGoogle Scholar
- Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.PubMedPubMedCentralGoogle Scholar
- Raymond, M., Rousset, F., 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered., 86, 248–249.CrossRefGoogle Scholar
- Senn, H.V., Swanson, G.M., Goodman, S.J., Barton, N.H., Pemberton, J.M., 2010. Phenotypic correlates of hybridisation between red and sika deer (genus Cervus). J. Anim. Ecol., 79, 414–425.CrossRefGoogle Scholar
- Shurtliff, Q.R., 2011. Mammalian hybrid zones: review. Mamm. Rev., 43, 1–21.CrossRefGoogle Scholar
- Trifonov, V.A., Dementyeva, P.V., Larkin, D.M., O’Brien, P.C.M., Perelman, P.L., Yang, F., Ferguson-Smith, MA, Graphodatsky, A.S., 2013. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC Biol. 11, 90.CrossRefGoogle Scholar
- Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., Shipley, P., 2004. Micro-checker: software for identifying correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 135.Google Scholar