Advertisement

Mammalian Biology

, Volume 95, Issue 1, pp 123–126 | Cite as

No evidence for multimodal body mass distributions and body mass-related capture order in wild-caught Damaraland mole-rats

  • Cornelia VoigtEmail author
  • Andries ter Maat
  • Nigel C. Bennett
Short communication

Abstract

Division of labour among workers is a universal property of eusocial insect societies. For Damaraland mole-rats (Fukomys damarensis), a eusocial mammal, it was proposed that workers can be divided into morphologically distinct (in terms of body mass) subcastes of frequent and infrequent workers. Here we investigate, by using capture data from a large number of colonies of Damaraland mole-rats, if body mass is multimodally distributed, which may be indicative of worker subcastes and, further, if there is a relationship between body mass and capture order, which may be indicative of morphological specialization for colony defence. Our analysis reveals unimodal body mass distributions for both sexes. Further, there is no evidence for body mass-related differences between individuals in the capture order. These data suggest that body mass is not an indicator of behavioural specialization in Damaraland mole-rats.

Keywords

Bathyergidae Damaraland mole-rat Body mass Capture order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, N.C, 1990. Behaviour and social organization in a colony of the Damaraland mole-rat Cryptomys damarensis. J. Zool. 220, 225–248.CrossRefGoogle Scholar
  2. Bennett, N.C, Faulkes, C.G., 2000. African Mole-rats. Ecology and Eusociality. Cambridge Univ Press, Cambridge.Google Scholar
  3. Bennett, N.C. Jarvis, J.U.M., 1988. The social structure and reproductive biology of colonies ofthe mole-rat, Cryptomys damarensis (Rodentia, Bathyergidae). J. Mammal. 69, 293–302.CrossRefGoogle Scholar
  4. Brett, R.A., 1991. The population structure of naked mole-rat colonies. In: Sherman, P.W., Jarvis, J.U.M., Alexander, R.D. (Eds.), The Biology ofthe Naked Mole-Rat. Princeton University Press, New Jersey, pp. 97–136.Google Scholar
  5. Cooney, R., 2002. Colony defense in Damaraland mole-rats, Cryptomys damarensis. Behav. Ecol. 13, 160–162.CrossRefGoogle Scholar
  6. Grüter, C., Segers, F.H., Menezes, C., Vollet-Neto, A., Falcón, T., von Zuben, L., Bitondi, M.M., Nascimento, F.S., Almeida, E.A., 2017. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees. Nat. Commun. 8, 4.CrossRefGoogle Scholar
  7. Jacobs, D.S., Bennett, N.C., Jarvis, J.U.M., Crowe, T.M., 1991. The colony structure and dominance hierarchy of the Damaraland mole-rat, Cryptomys damarensis (Rodentia, Bathyergidae), from Namibia. J. Zool. (Lond.) 224, 553–576.CrossRefGoogle Scholar
  8. Jarvis, J.U.M., 1981. Eusociality in a mammal - cooperative breeding in naked mole-rat colonies. Science 212, 571–573.CrossRefGoogle Scholar
  9. Jarvis, J.U.M., Bennett, N.C., 1993. Eusociality has evolved independently in two genera of bathyergid mole-rats - but occurs in no other subterranean mammal. Beh Ecol. Sociobiol. 33, 253–260.CrossRefGoogle Scholar
  10. Lacey, E.A., Sherman, P.W., 1991. Social organisation of naked mole-rat colonies: evidence for divisions of labor. In: Sherman, P.W., Jarvis, J.U.M., Alexander, R.D. (Eds.), The Biology of the Naked Mole-Rat. Princeton University Press, New Jersey, pp. 275–336.Google Scholar
  11. Lovegrove, B.G., 1988. Colony size and structure, activity patterns and foraging behaviour of a colony of the social mole-rat Cryptomys damarensis (Bathyergidae). J. Zool. (Lond.) 216, 391–402.CrossRefGoogle Scholar
  12. Lövy, M., Šklíba, J., Šumbera, R., 2013. Spatial and temporal activity patterns of the free-living giant mole-rat (Fukomys mechowii), the largest social bathyergid. PLoS One 8, e55357.CrossRefGoogle Scholar
  13. Maechler, M., 2016. Hartigan’s Dip Test Statistic for Unimodality - Corrected. R Package Version 0., pp. 75–77 https://www.cran.r-project.org/package=diptest.Google Scholar
  14. Robinson, G.E., 1992. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665.CrossRefGoogle Scholar
  15. Seeley, T.D., 1982. Adaptive significance of the age polyethism schedule in honeybee colonies. Beh Ecol. Sociobiol. 11, 287–293.CrossRefGoogle Scholar
  16. Šklíba, J., Mazoch, V., Patzenhauerová, H., Hrouzková, E., Lövy, M., Kott, O., Šumbera, R., 2012. A maze-lover’s dream: burrow architecture, natural history and habitat characteristics of Ansell’s mole-rat (Fukomys anselli). Mamm. Biol. 77, 420–427.CrossRefGoogle Scholar
  17. Šklíba, J., Lövy, M., Burda, H., Šumbera, R., 2016. Variability of space-use patterns in a free living eusocial rodent, Ansell’s mole-rat indicates age-based rather than caste polyethism. Sci. Rep. 6, 37497.CrossRefGoogle Scholar
  18. Wilson, E.O., 1953. The origin and evolution of polymorphism in ants. Q. Rev. Biol. 28, 136–156.CrossRefGoogle Scholar
  19. Wilson, E.O., 1979. The evolution of caste systems in social insects. Proc. Am. Philos. Soc. Held Philadelphia Promot. Useful. Knowl. 123, 204–210.Google Scholar
  20. Young, A.J., Bennett, N.C., 2010. Morphological divergence of breeders and helpers in wild Damaraland mole-rat societies. Evolution 64, 3190–3197.CrossRefGoogle Scholar
  21. Zöttl, M., Thorley, J., Gaynor, D., Bennett, N.C., Clutton-Brock, T., 2016. Variation in growth of Damaraland mole-rats is explained by competition rather than by functional specialization for different tasks. Biol. Lett. 12, 20160820.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Cornelia Voigt
    • 1
    Email author
  • Andries ter Maat
    • 2
  • Nigel C. Bennett
    • 1
  1. 1.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Behavioural NeurobiologyMax Planck Institute for OrnithologySeewiesenGermany

Personalised recommendations