Advertisement

Mammalian Biology

, Volume 93, Issue 1, pp 93–96 | Cite as

Winter snow cover increases swamp rabbit (Sylvilagus aquaticus) mortality at the northern extent of their range

  • Elizabeth M. HillardEmail author
  • Alison C. Edmund
  • Joanne C. Crawford
  • Clayton K. Nielsen
  • Eric M. Schauber
  • John W. Groninger
Short communication

Abstract

In North America, native lagomoprhs that are habitat specialist are of conservation concern due to loss of habitat and fragmentation, population declines, and their importance in food webs. Moreover, lago-morphs occupying range edges are especially vulnerable to environmental conditions given changes in climate. We evaluated the influence of snow cover on winter mortality for 136 swamp rabbits (Sylvilagus aquaticus) monitored 2009–2016 in southern Illinois, USA. Winter estimates of daily mortality rates were at least five times higher (P=0.03) on snow-covered days (̄{itx}=0.033, SE = 0.009) than snow-free days (̄{itx}=0.004, SE = 0.001). Winter estimates of daily mortality rates due to prédation were at least twice as high (P=0.08) on snow-covered days (̄{itx}=0.027, SE = 0.010) than snow-free days (̄{itx}= 0.003, SE = 0.000). Swamp rabbit mortality was higher on snow-covered days primarily via elevated levels of prédation. Snow cover might limit the availability of hiding cover and food resources for swamp rabbits, thereby increasing their movements and vulnerability to predators, especially given their pelage coloration.

Keywords

Range limit Predation Snow cover Swamp rabbit Weather 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B., Akçakaya, H., Araujo, M., Fordham, D., Martinez-Meyer, E., Thuiller, W., Brook, B.W., 2009. Dynamics of range margins for metapopulations under climate change. Proc. R. Soc. Biol. 276, 1415–1420.CrossRefGoogle Scholar
  2. Angerbjórn, A., Flux, J.E.C., 1995. Lepus timidus. Mamm. Species 495, 1–11.CrossRefGoogle Scholar
  3. Barbour, M.S., Woolf, A., Porath, J.W., 2001. Recent trends and future outlook for the swamp rabbit (Sylvilagus aquaticus) in Illinois. Trans. Ill. State Acad. Sci. 94, 151–160.Google Scholar
  4. Beaudry, F., Demaynadier, P.G., Hunterjr, M.X., 2010. Identifying hot moments in road-mortality risk for freshwater turtles. J. Wildl. Manag. 74, 152–159.CrossRefGoogle Scholar
  5. Berkman, L.K., Nielsen, C.K., Roy, C.L., Heist, E.J., 2015. Comparative genetic structure of sympatric ledporids in southern Illinois. J. Mamm. 96, 552–563.CrossRefGoogle Scholar
  6. Berteaux, D., Reale, D., McAdam, A.G., Boutin, S., 2004. Keeping pace with fast climate change, can arctic life count on evolution? Integr. Comp. Biol. 44, 140–151.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boucher-Lalonde, V., Morin, A., Currie, D.J., 2014. A consistent occupancy-climate relationship across birds and mammals of the Americas. Oikos 123, 1029–1036.CrossRefGoogle Scholar
  8. Chapman, J.A., Feldhamer, G.A., 1981. Sylvilagus aquaticus. Mamm. Species,  https://doi.org/10.2307/3504012.Google Scholar
  9. Crawford, J.C., Nielsen, C.K., Schauber, E.M., Roy, C.K., Berkman, L., Sharine, P.D., Rubert, L., 2012. Ecology and management of the swamp rabbit at the northern edge of its range in southern Illinois. Endanger. Species 26, 64–69, UPDATE.Google Scholar
  10. Crawford, J.C., Nielsen, C.K., Schauber, E.M., 2018. Survival and habitat use of sympatric lagomorphs in bottomland hardwood forests. Can. J. Zool. 96, 713–722.CrossRefGoogle Scholar
  11. Dickson, J.G., 2001. In: Rabbits, Dickson, J.G. (Eds.), Wildlife of Southern Forests, Habitat and Management. Hancock House, Washington D. C., USA, pp. 186–190.Google Scholar
  12. Dumyahn, J.B., Zollner, P.A., Smith, W.P., 2015. Microhabitat comparison of swamp rabbit sites between periphery and core of the species range. J. Wildl. Manag. 79, 1199–1206.CrossRefGoogle Scholar
  13. Duncan, R.P., Cassey, P., Blackburn, T.M., 2009. Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc. R. Soc. Biol. 276, 1449–1457.CrossRefGoogle Scholar
  14. Francis, J.A., Vavrus, S.J., 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10, 014005.CrossRefGoogle Scholar
  15. Gaston, K.J., 2009. Geographic range limits of species. Proc. R. Soc. Biol. 276, 1391–1393.CrossRefGoogle Scholar
  16. Hillard, E.M., Nielsen, C.K., Groninger, J.W., 2017. Swamp rabbits as indicators of wildlife habitat quality in bottomland hardwood forest ecosystems. Ecol. Indie. 79, 47–53.CrossRefGoogle Scholar
  17. Hoffmann, A.A., Blows, M.W., 1994. Species borders, ecological and evolutionary perspectives. Trends Ecol. Evol. 9, 223–227.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Holt, R.D., Barfield, M., 2009. Trophic interactions and range limits, the diverse roles of prédation. Proc. R. Soc. Biol. 276, 1435–1442.CrossRefGoogle Scholar
  19. Hunt, T.P., 1959. Breeding habits of the swamp rabbit with notes on its life history. J. Mamm. 40, 82–91.CrossRefGoogle Scholar
  20. Indiana Department of Natural Resources, 2015. https://doi.org/www.in.gov/dnr/naturepreserve/4725.htm (Accessed 20 January 2017).
  21. Keith, L.B., Bloomer, S.E., 1993. Differential mortality of sympatric snowshoe hares and cottontail rabbits in central Wisconsin. Can. J. Zool. 71, 1694–1697.CrossRefGoogle Scholar
  22. Keith, L.B., Cary, J.R., Rongstad, O.J., Brittingham, M.C., 1984. Demography and ecology of a declining snowshoe hare population. Wildl. Monogr. 90, 3–43.Google Scholar
  23. Keitt, T.H., Lewis, M.A., Holt, R.D., 2001. Allée effects, invasion pinning, and species’ borders. Am. Nat. 157, 203–216.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Leach, K., Kelly, R., Cameron, A., Montgomery, W.I., Reid, N., 2015. Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha. PLoS One,  https://doi.org/10.1371/journal.pone.0122267.Google Scholar
  25. Litvaitis, J.A., 1991. Habitat use by snowshoe hares, Lepus amencanus, in relation to pelage color. Can. Field Nat. 105, 275–277.Google Scholar
  26. Lowe, C.E., 1958. Ecology of the swamp rabbit in Georgia. J. Mamm. 39, 116–127.CrossRefGoogle Scholar
  27. Mayfield, H.F., 1975. Suggestions for calculating nest success. Wilson Bull. 87, 456–466.Google Scholar
  28. McClain, M.E., Boyer, E.W., Dent, L., Gergel, S.E., Grimm, N.B., Groffman, P.M., Hart, S.C., Harvey, Judson W., Johnston, Carol A., Mayorga, Emilio, McDowell, William H., Pinay, Gilles, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312.CrossRefGoogle Scholar
  29. Melillo, J.M., Richmond, T.C., Yohe, G.W., 2014. Highlights of Climate Change Impacts in the United States: the Third National Climate Assessment. U.S. Global Change Research Program., pp. 841,  https://doi.org/10.7930/J0Z31WJ2.Google Scholar
  30. Merilaita, S., Lind, J., 2005. Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc. R. Soc. Biol. 272, 665–670.CrossRefGoogle Scholar
  31. Meslow, E.C., Keith, L.B., 1971. A correlation analysis of weather versus snowshoe hare population parameters. J. Wildl. Manag. 35, 1–15.CrossRefGoogle Scholar
  32. Mills, L.S., Zimova, M., Oyler, J., Running, R., Abatzoglou, J., Lukacs, P., 2013. Camouflage mismatch in seasonal coat color due to decreased snow duration. PNAS 110, 7360–7365.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mills, S.C., Oliver, T.H., Bradbury, R.B., Gregory, R.D., Brereton, T., Kuhn, E., Kuussaari, M., Musche, M., Roy, D.B., Schmucki, R., Stefanescu, C., van Swaay, C., Evans, K.L., 2017. European butterfly populations vary in sensitivity to weather across their geographical ranges. Global Ecol. Biogeogr. 26, 1374–1385.CrossRefGoogle Scholar
  34. Missouri Department of Conservation, 2018. Missouri Species and Communities of Conservation Concern (Accessed 20 June 2018) https://doi.org/nature.mdc.mo.gov/sites/default/nTes/downloads/2018_SOCC.pdf.Google Scholar
  35. Nielsen, C.K., Berkman, L.K., 2018. Sylvilagus aquaticus (Bachman, 1837): Swamp rabbit. In: Smith, A.T., Johnston, C.H., Alves, P.C., Hacklánder, K. (Eds.), Lagomorphs, Pikas, Rabbits, and Hares of the World. Johns Hopkins University Press, Baltimore, Maryland, USA, pp. 137–140.Google Scholar
  36. NOAA/NCDC., Subset used: December- March, 2009–2016, Accessed 14 June 2016 2016. Climate Data Online, Daily Summaries. NOAA/National Climatic Data. https://doi.org/www.ncdc.noaa.gov/cdo-web/datasets/.
  37. Notaro, M., Lorenz, D., Hoving, C., Schummer, M., 2014. Twenty-first-century projections of snowfall and winter severity across central-eastern North America. J. Clim. 27, 6526–6550.CrossRefGoogle Scholar
  38. Pajda-De La, O.J., Singh, P., Scheibe, J., 2013. Persistence of a swamp rabbit metapopulation: the incidence functional model approach. Int. J. Ecol. Dev. 25, 1–20.CrossRefGoogle Scholar
  39. Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.CrossRefGoogle Scholar
  40. Pedersen, S., Odden, M., Pedersen, H.C., 2017. Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. Ecosphere 8, e0722.CrossRefGoogle Scholar
  41. Piatt, S.G., Bunch, M., 2000. Distribution and status of the swamp rabbit in South Carolina. Proc. Annu. Conf. Assoc. Southeast. Fish Wildl. Agen. 54, 408–414.Google Scholar
  42. Price, T.D., Kirkpatrick, M., 2009. Evoluationary stable range limits set by interspecific competition. Proc. R. Soc. Biol. 276, 1429–1434.CrossRefGoogle Scholar
  43. Robinson, C.D., Crawford, J.C., Corcoran, L., Schauber, E.M., Nielsen, C.K., 2016. Metapopulation viability of swamp rabbits in southern Illinois, potential impacts of habitat change. J. Mamm. 97, 68–79.CrossRefGoogle Scholar
  44. Roy Nielsen, C.L., Wakamiya, S.M., Nielsen, C.K., 2008. Viability and patch occupancy of the state-endangered swamp rabbit metapopulation in southwestern Indiana. Biol. Conserv. 141, 1043–1054.CrossRefGoogle Scholar
  45. Scharine, P.D., Nielsen, C.K., Schauber, E.M., Rubert, L., Crawford, J.C., 2009. Swamp rabbits in floodplain ecosystems, influence of landscape- and stand-level habitat on relative abundance. Wetlands 29, 615–623.CrossRefGoogle Scholar
  46. Scheibe, J.S., Henson, R., 2003. The distribution of swamp rabbits in southeast Missouri. Southeast. Nat. 2, 327–334.CrossRefGoogle Scholar
  47. Sievert, P.R., Keith, L.B., 1985. Survival of snowshoe hares at a geographic range boundary. J. Wildl. Manag. 49, 854–866.CrossRefGoogle Scholar
  48. Sikes, R.S., Gannon, W.L., Animal Care and Use Committee of the American Soc. of Mammalogists, 2016. 2016 guidelines of the American society of mammalogists for the use of wild mammals in research. J. Mamm. 97, 663–688.CrossRefGoogle Scholar
  49. Stoddart, L.C., 1985. Severe weather related mortality ofblack-tailedjackrabbits. J. Wildl. Manag. 49, 696–698.CrossRefGoogle Scholar
  50. Terrel, T.L., 1972. The swamp rabbit (Sylvilagus aquaticus) in Indiana. Am. Mid. Nat. 87, 283–295.CrossRefGoogle Scholar
  51. Thomas, C.D., 2010. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495.CrossRefGoogle Scholar
  52. Toll, J.E., Baskett, T.S., Conaway, C.H., 1960. Home range, reproduction and foods of the swamp rabbit in Missouri. Am. Mid. Nat. 63, 398–412.CrossRefGoogle Scholar
  53. Trent, T.T., Rongstad, O.J., 1974. Home range and survival of cottontail rabbits in southwestern Wisconsin. J. Wildl. Manag. 38, 459–472.CrossRefGoogle Scholar
  54. Vucetich, J.A., Waite, T.A., 2003. Spatial patterns of demography and genetic processes across the species’ range, null hypotheses for landscape conservation genetics. Conserv. Genet. 4, 639–645.CrossRefGoogle Scholar
  55. Watland, A.M., Schauber, E.M., Woolf, A., 2007. Translocation of swamp rabbits in southern Illinois. Southeast. Nat. 6, 259–270.CrossRefGoogle Scholar
  56. Wilson, R.J., Gutierrex, D., Gutierrex, J., Martinex, D., Agudo, R., Monserrat, V.J., 2005. Modeling the effect of habitat fragmentation on range expansion in a butterfly. Proc. R. Soc. Biol. 276, 1421–1427.CrossRefGoogle Scholar
  57. Wong, B.M., Candolin, U., 2015. Behavioral response to changing environments. Behav. Ecol. 26, 665–673.CrossRefGoogle Scholar
  58. Zimova, M., Mills, L.S., Lukacs, P.M., Mitchell, M.S., 2014. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proc. R. Soc. Biol. 281, 20140029.CrossRefGoogle Scholar
  59. Zimova, M., Mills, L.S., Nowak, J.J., 2016. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2018

Authors and Affiliations

  • Elizabeth M. Hillard
    • 1
    • 3
    Email author
  • Alison C. Edmund
    • 3
  • Joanne C. Crawford
    • 1
    • 3
  • Clayton K. Nielsen
    • 1
    • 3
  • Eric M. Schauber
    • 2
    • 3
  • John W. Groninger
    • 1
  1. 1.Department of ForestrySouthern Illinois UniversityCarbondaleUSA
  2. 2.Department of ZoologySouthern Illinois UniversityCarbondaieUSA
  3. 3.Cooperative Wildlife Research LaboratorySouthern Illinois UniversityCarbondaieUSA

Personalised recommendations