Advertisement

Mammalian Biology

, Volume 94, Issue 1, pp 92–97 | Cite as

Chemical compounds in Neotropical fruit batplant interactions

  • Lays Cherobim ParolinEmail author
  • Fabricio Augusto Hansel
  • Gledson Vigiano Bianconi
  • Sandra Bos Mikich
Original investigation

Abstract

Fruiteating bats are important seed dispersers in tropical forests. Olfaction seems to be the main sense used by these bats to locate and select food. Previous studies have demonstrated that they identify and select volatile organic compounds, being able to track essential oils of their preferred fruits. However, the specific role played by different compounds in this attraction is largely unknown. Here, we used chromatographic analysis and attraction trials to investigate the molecular basis of foragingin two Neotropical bat species. Both were able to discriminate two classes of compounds, monoterpenes and sesquiterpenes. We suggest that the first class provide the initial signal as they are released only in early stages and the second group is formed by less volatile compounds released in later stages and responsible for maintaining bat interest even in the absence of monoterpenes. These findings provide a unique molecular perspective for this mutualistic interaction with important implications in forest restoration. Specifically, simple mixtures of commercially available terpenes could act as attractants to seeddispersing bats into degraded landscapes.

Keywords

Chiroptera Essential oil Mutualism Olfaction Terpenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.P., 2007. Identification of Essential Oil Components By Gas Chromatography/Mass Spectrometry, 4th ed. Allured Publishing Corporation, Carol Stream.Google Scholar
  2. Altmann, J., 1974. Observational study of behavior: sampling methods. Behavior 59, 227–266.CrossRefGoogle Scholar
  3. Altringham. J.D., 2011. Bats: from Evolution to Conservation, 2nd ed. Oxford University Press, New York.CrossRefGoogle Scholar
  4. Baldwin, I.T., Halitschke, R., Paschold, A., Dahl, C.C., Von Preston, CA., 2006. Volatile signaling in plantplant interactions: “Talking trees” in the genomics era. Science 311, 812–815,  https://doi.org/10.1126/science.1118446.CrossRefGoogle Scholar
  5. Bhatnagar, K.P., 1975. Olfaction in Artibeus jamaicensis and Myotis lucifugus inthe context of vision and echolocation. Experientia 272, 856.CrossRefGoogle Scholar
  6. Bhatnagar, K.P., Kallen, F.C., 1975. Quantitative observations on the nasál epithelia and olfactory innervation in bats. Suggested design mechanisms for the olfactorybulb.ActaAnat. 91, 272–282.Google Scholar
  7. Bianconi, G.V., Mikich, S.B., Teixeira, S.D., Maia, B.H.L.N.S., 2007. Attraction of fruiteating bats with essential oils of fruits: a potential tool for forest restoration. Biotropica 39, 136–140,  https://doi.org/10.1111/j.1744-7429.2006.00236.x.CrossRefGoogle Scholar
  8. Bianconi, G.V., Suckow, U.M.S., Cruz-Neto, A.P., Mikich, S.B., 2012. Use of fruit essential oils to assist forest regeneration by bats. Restor. Ecol. 20, 211–217,  https://doi.org/10.1111/j.1526-100X.2010.00751.x.CrossRefGoogle Scholar
  9. Borges, R.M., Bessiěre, J.M., Hossaert-McKey, M., 2008. The chemical ecology of seed dispersal in monoecious and dioecious flgs. Funct. Ecol. 22, 484–493,  https://doi.org/10.1111/j.1365-2435.2008.01383.x.CrossRefGoogle Scholar
  10. Carter, G.G., Ratcliffe, J.M., Galef, B.G., 2010. Flower bats (Glossophaga soríána) and fruit bats (Carollia perspicillata) rely on spatial cues over shapes and scents when relocating food. PLoS One 5, 1–6,  https://doi.org/10.1371/journal.pone.0010808.CrossRefGoogle Scholar
  11. Dudareva, N., Negre, F., Nagegowda, D.A., Orlova, I., 2006. Plant Volatiles: Recent Advances and Future Perspectives. CRC Crit. Rev. Plant Sci. 25, 417–440,  https://doi.org/10.1080/07352680600899973.CrossRefGoogle Scholar
  12. Dudareva, N., Klempien, A., Muhlemann, J.K., Kaplan, I., 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32,  https://doi.org/10.1111/nph.12145.CrossRefGoogle Scholar
  13. Handley, CO., Wilson, D.E., Gardner, A.L., 1991. Demography and natural history of the common fruit bat, Artibeus jamaicensis, on Barro Colorado Island, Panamá. Smithson. Contrib. Zool., 1–173,  https://doi.org/10.5479/si.00810282.511.Google Scholar
  14. Hodgkison, R., Ayasse, M., Kalko, E.K.V., Haberlein, C., Schulz, S., Mustapha, W.A.W., Zubaid, A., Kunz, T.H., 2007. Chemical ecology of fruit bat foraging behavior in relation to the fruit odors of two species of paleotropical batdispersed flgs (Ficus hispida and Fícus scortechinii). J. Chem. Ecol. 33, 2097–2110,  https://doi.org/10.1007/sl0886-007-9367-1.CrossRefGoogle Scholar
  15. Hodgkison, R., Ayasse, M., Haberlein, C., Schulz, S., Zubaid, A., Mustapha, W.A.W., Kunz, T.H., Kalko, E.K.V., 2013. Fruit bats and bat fruits: the evolution of fruit scent in relation to the foraging behaviour of bats in the New and Old World tropics. Funct. Ecol. 27, 1075–1084,  https://doi.org/10.1111/1365-2435.12101.CrossRefGoogle Scholar
  16. Jones, K.E., Bininda-Emonds, O.R.P., Gittleman, J.L., 2005. Bats, clocks, and rocks: diversiflcation patterns in Chiroptera. Evolution (N. Y.) 59, 2243–2255.Google Scholar
  17. Kalko, E.K.V., Handley Jr, CO., Handley, D., 1996. Organization, diversity, and longterm dynamics of a Neotropical bat community. In: Cody, M., Smallwood, J. (Eds.), LongTerm Studies of Vertebrate Communities. Academie Press, Los Angeles, pp. 503–553,  https://doi.org/10.1016/B978-012178075-3/50017-9.Google Scholar
  18. Knudsen, J.T., Eriksson, R., Gershenzon, J., Stáhl, B., 2006. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120,  https://doi.org/10.1663/0006-8101(2006)72(1)dadofs]2.0.co;2.CrossRefGoogle Scholar
  19. Laska, M., 1990a. Olfactory sensitivity to food odor components in the shorttailed fruit bat, Carollia perspiállata (Phyllostomatidae, Chiroptera). J. Comp. Physiol. A 166, 395–399,  https://doi.org/10.1007/BF00204812.CrossRefGoogle Scholar
  20. Laska, M., 1990b. Olfactory discrimination ability in shorttailed fruit bat, Carollia perspiállata (Chiroptera: Phyllostomatidae). J. Chem. Ecol. 16, 3291–3299,  https://doi.org/10.1007/BF00982099.CrossRefGoogle Scholar
  21. McGarvey, D.J., Croteau, R., 1995. Terpenoid metabolism. Plant Cell 7, 1015–1026,  https://doi.org/10.1105/tpc.7.7.1015.PubMedPubMedCentralGoogle Scholar
  22. Mikich, S.B., Bianconi, G.V., Maia, B.H.L.N., Teixeira, S.D., 2003. Attraction of the fruiteating bat Carollia perspiállata to Piper gaudíchaudíanum essential oil. J. Chem. Ecol. 29, 2379–2383,  https://doi.org/10.1023/A:1026290022642.CrossRefGoogle Scholar
  23. Murlis, J., Elkinton, E., Cardé, R.T., 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532,  https://doi.org/10.1146/annurev.ento.37.1.505.CrossRefGoogle Scholar
  24. Parolin, LC, Mikich, S.B., Bianconi, G.V., 2015. Olfaction inthe fruiteating bats Artibeus líturatus and Carollia perspiállata: an experimental analysis. An. Acad. Bras. Cienc. 87, 2047–2053,  https://doi.org/10.1590/0001-3765201520140519.CrossRefGoogle Scholar
  25. Parolin, LC, Bianconi, G.V., Mikich, S.B., 2016. Consistency in fruit preferences across the geographical range of the frugivorous bats Artibeus, Carollia and Sturnira (Chiroptera). Iheringia. Série Zool. 106, 1–6,  https://doi.org/10.1590/1678-4766e2016010.Google Scholar
  26. Ranganathan, Y., Borges, R.M., 2010. Reducing the babel in plant volatile communication: using the forest to see the trees. Plant. Biol. 12, 735–742,  https://doi.org/10.1111/j.1438-8677.2009.00278.x.CrossRefGoogle Scholar
  27. Rodríguez, A., San Andrés, V., Cervera, M., Redondo, A., Alquézar, B., Shimada, T., Gadea, J., Rodrigo, M.J., Zacarías, L., Palou, L., López, M.M., Castafiera, P., Pefia, L., 2011. Terpene downregulation inorange revealsthe role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol. 156, 793–802,  https://doi.org/10.1104/pp.111.176545.CrossRefGoogle Scholar
  28. Sazima, L., Sazima, M., 1977. Solitary and group foraging: two flowervisiting patterns of the lesser spearnosed bat Phyllostomus discolor. Biotropica 9, 213–215,  https://doi.org/10.2307/2387882.CrossRefGoogle Scholar
  29. Seigler, D.S., 1998. Plant Secondary Metabolism. Kluwer Academie Publishers, Dordrecht, The Netherlands.Google Scholar
  30. Sikes, R., Gannon, W.L, 2011. Guidelines of the American Society of Mammalogists forthe use of wild mammals in research. J. Mammal. 92, 235–253,  https://doi.org/10.1644/06-MAMMF-185Rl.1.CrossRefGoogle Scholar
  31. Simeone, M.L.F., Mikich, S.B., Cócco, L.C., Hansel, A., Bianconi, G.V., 2011. Chemical composition of essential oils from ripe and unripe fruits oíPiper amaiago L. var. Medium (Jacq.) Yunck and Piper hispidum Sw.J. Essent. Oil Res. 23, 54–58.CrossRefGoogle Scholar
  32. Tholl, D., 2006. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9, 297–304,  https://doi.org/10.1016/j.pbi.2006.03.014.CrossRefGoogle Scholar
  33. van der Piji, L., 1957. The dispersal of plants by bats (Chiropterochory). Acta Bot. Neerl. 6, 291–315.CrossRefGoogle Scholar
  34. van der Piji, L., 1982. Principles of Dispersal in Higher Plants, 3rd ed. SpringerVerlag, Berlin Heidelberg New York, Berlin.Google Scholar
  35. Willis, M.A., 2008. Chemical plume traeking behavior in animals and mobile robots. J. Inst. Navig. 55, 127–135,  https://doi.org/10.1002/j.2161-4296.2008.tb00423.x.CrossRefGoogle Scholar
  36. Yu, F., Utsumi, R., 2009. Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cell. Mol. Life Sci. 66, 3043–3052,  https://doi.org/10.1007/s00018-009-0066-7.CrossRefGoogle Scholar
  37. Zhang, W., Zhu, G., Tan, L., Yang, J., Chen, Y., Liu, Q., Shen, Q., Chen, J., Zhang, L., 2014. Role of olfaction in the foraging behavior and trialand-error learning in shortnosed fruit bat, Cynopterus sphinx. Behav. Processes 103, 23–27,  https://doi.org/10.1016/j.beproc.2013.10.004.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Lays Cherobim Parolin
    • 1
    Email author
  • Fabricio Augusto Hansel
    • 2
  • Gledson Vigiano Bianconi
    • 3
    • 4
  • Sandra Bos Mikich
    • 2
  1. 1.Pontifláa Universidade Católica do ParanáEscola de Educação e HumanidadesCuritibaBrazil
  2. 2.Embrapa FlorestasColomboBrazil
  3. 3.Instituto Federal do ParanáPinhaisBrazil
  4. 4.Instituto Neotropical: Pesquísa e ConservaçãoCuritibaBrazil

Personalised recommendations