Advertisement

Mammalian Biology

, Volume 92, Issue 1, pp 54–61 | Cite as

Understanding factors affecting the distribution of the maned wolf (Chrysocyon brachyurus) in South America: Spatial dynamics and environmental drivers

  • Lorena Coelho
  • David RomeroEmail author
  • Diego Queirolo
  • José Carlos Guerrero
Original investigation

Abstract

The maned wolf is the largest canid in South America, and is currently classified as a near threatened species. Though once widely distributed in open habitats throughout the continent, the species’ current distribution is significantly reduced, especially in the southern part of its range. Species distribution models are useful tools that can reveal the causes contributing to the decline of the species, especially in the southern limit of its global distribution. In this paper, we compared the maned wolf distribution, from known localities for the species, with a set of predictor variables: spatial (longitude and latitude), topoclimatic, land cover and anthropogenic. We modeled the distribution range using favorability function models that combine the probability of the occurrence of an event with the probability of that event occurring at random. We detected that the most favorable areas for the presence of the maned wolf are concentrated in southeastern and central Brazil, south of Paraguay and northeastern Argentina. Our results point to a central distribution nucleus of more favorable conditions for the species, from which it may have dispersed into intermediate or low favorable areas as found in the southernmost part of its range. Spatial models are useful in highlighting which factors affect the distribution of the maned wolf in South America, and use these results to guide conservation measures to be taken to improve its status.

Keywords

Conservation Distribution modeling Favorability function Multifactor approach Peripheral population reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo, P., Real, R., Gortázar, C., 2011. Favorabilidad ecogeográfica para el corzo: Distribucióny abundancia. Pirineos 166, 9–27.Google Scholar
  2. Acevedo, P., Real, R., 2012. Favourability: concept distinctive characteristics and potential usefulness. Naturwissenschaften 99, 515–522.PubMedGoogle Scholar
  3. Allouche, O., Tsoar, A., Kadmon, R., 2006. Methodological insights. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232.Google Scholar
  4. Araújo, M.B., Thuiller, W., Pearson, R.G., 2006. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728.Google Scholar
  5. Barbosa, A.M., Real, R., Vargas, J.M., 2010. Use of coarse-resolution models of species’ distributions to guide local conservation inferences. Conserv. Biol. 24, 1378–1387.PubMedGoogle Scholar
  6. Barbosa, A.M., 2016. fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol. Evol. 6, 853–858.Google Scholar
  7. Barbosa, A.M., Brown, J.A., Jiménez-Valverde, A., Real, R., 2016. modEvA: Model Evaluation and Analysis. R Package Version 1.3.2. https://doi.org/www.CRAN.R-project.org/package=modEvA.Google Scholar
  8. Beccaceci, M.D., 1992. The maned wolf, Chrysocyon brachyurus, in Argentina. In: Matern, B. (Ed.), International Studbook forthe Maned Wolf Chrysocyon brachyurus (Illiger, 1811). Frankfurt Zoological Garden, Frankfurt, pp. 50–56.Google Scholar
  9. Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300.Google Scholar
  10. Bereta, A., Freitas, S.R., Bueno, C., 2017. Novas ocorrências de Chrysocyon brachyurus (Carnivora) no estado do Rio de Janeiro indicando a expansão de sua distribuição geográfica. Bol. Soc. Bras. Mastozool. 78, 5–8.Google Scholar
  11. Borcard, D., Legendre, P., Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055.Google Scholar
  12. Coelho, C.M., Bandeira de Melo, L.F., Sábato, M.A., Vaz Magni, E.M., Hirsch, A., Young, R.J., 2008. Habitat use by wild Maned wolves (Chrysocyon brachyurus) in a transition zone environment. J. Mammal. 89 (1), 97–104.Google Scholar
  13. Consorte-McCrea, A., 2014. Relationships between the Maned wolf and people. In: Consorte-McCrea, A.G., Ferraz Santos, E. (Eds.), Ecology and Conservation of the Maned Wolf. Multidisciplinary Perspectives. CRC Press Taylor and Francis Group, London, pp. 35–52.Google Scholar
  14. Cramer, J.S., 1999. Predictive performance of binary logit model in unbalanced samples. J. R. Stat. Soc. D 48, 85–94.Google Scholar
  15. Dietz, J.M., 1985. Chrysocyon brachyurus. Mamm. Sp. 234, 1–4.Google Scholar
  16. Dodd, L.E., Pepe, M.S., 2003. Partial AUC estimation and regression. Biometrics 59, 614–662.PubMedGoogle Scholar
  17. Duprat, P.L., Andriolo, A., 2011. Mastofauna não-voadora de médio e grande porte em um fragmento de Mata Atlântica no município de Rio Novo, MG. Rev. Bras. Zoociências 13, 163–172.Google Scholar
  18. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li,J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S., Zimmermann, N.E., 2006. Novel methods improve prediction of species distributions from occurrence data. Ecography 29, 129–151.Google Scholar
  19. Emmons, L.H., 2012. The maned wolves of Kempff Mercado National Park. In: Emmons, L.H. (Ed.), The Maned Wolves of Noel Kempff Mercado National Park. Smithsonian Contribution to Zoology, 639, pp. 135.Google Scholar
  20. Franklin, J., 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge, UK.Google Scholar
  21. Franklin, J., 2013. Species distribution models in conservation biogeography: developments and challenges. Divers. Distrib. 19, 1217–1223.Google Scholar
  22. González, E.M., Martínez-Lanfranco, J.A., Juri, E., Rodales, A.L., Botto, G., Soutullo, A., 2013. Mamíferos. In: Clavijo, C., Martínez-Lanfranco, J.A., Soutullo, A. (Eds.), Especies prioritarias para la conservación en Uruguay. Vertebrados, moluscos continentales y plantas vasculares. SNAP/DINAMA/MVOTMA, Montevideo, pp. 175–207.Google Scholar
  23. González, S., Cosse, M., Franco, M.R., Emmons, L., Vynne, C., Barbanti Duarte, J.M., Beccacesi, M., Maldonado, J.E., 2015. Population structure of mtDNA variation due to Pleistocene fluctuations in the South American maned Wolf (Chrysocyon brachyurus, llliger, 1815): management units for conservation. J. Hered. 106, 459–468.PubMedGoogle Scholar
  24. Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186.Google Scholar
  25. Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, B.A.O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P., Buckley, Y.M., 2013. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435.PubMedPubMedCentralGoogle Scholar
  26. Hanley, J.A., McNeil, B.J., 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36.Google Scholar
  27. Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression, second ed. John Wiley and Sons, Wiley Series in Probability and Statistics, New York.Google Scholar
  28. Langguth, A., 1975. Ecology and evolution in the South American Canids. In: Fox, M.W. (Ed.), The Wild Canids. Their Systematics, Behavioral Ecology and Evolution. Van Nostran, Reinhold, New York, pp. 192–206.Google Scholar
  29. Legendre, P., 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673.Google Scholar
  30. Legendre, P., Legendre, L., 1998. Numerical Ecology, second english ed. Elsevier Science, Amsterdam.Google Scholar
  31. Liu, C., White, M., Newell, G., 2009. Measuring the accuracy of species distribution models: a review. In: 18th World IMACS/MODSIM Congress, Cairns, Australia.Google Scholar
  32. Kawashima, R.S., Ferreira de Siqueira, M., Mantovani, J.E., 2007. Dados do monitoramento da cobertura vegetal por NDVI na modelagem da distribuição geográfica potencial do lobo-guará (Chrysocyon bracyurus). In: Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, pp. 3983–3990.Google Scholar
  33. Márquez, A.L., Real, R., Olivero, J., Estrada, A., 2011. Combining climate with other influential factors for modelling climate change impact on species distributionClim. Change 108, 135–157.Google Scholar
  34. Montgomery, D.C., Peck, E.A., 1992. Introduction to Linear Regression Analysis. Wiley, New York, NY, USA.Google Scholar
  35. Muñoz, A.R., Real, R., Barbosa, A.M., Vargas, J.M., 2005. Modelling the distribution of Bonelli’s eagle in Spain: implications for conservation planning. Divers. Distrib. 11, 477–486.Google Scholar
  36. Muñoz, A.R., Real, R., 2006. Assessing the potential range expansion of the exotic monk parakeet in Spain. Divers. Distrib. 12, 656–665.Google Scholar
  37. Orozco, M.M., Ceballos, L.A., Cruz Pino, M., Gürtler, R.E., 2014. Local threats and potential infectious hazards to Maned wolves (Chrysocyon brachyurus) in the southeastern Argentine Chaco. Mammalia 78 (3), 339–349.Google Scholar
  38. Paula, R.C., DeMatteo, K., Available from 2015. Chrysocyon brachyurus. The IUCN Red List of Threatened Species (05 March 2017)  https://doi.org/10.2305/IUCN.UK.20154.RLTS.T4819A82316878.Google Scholar
  39. Paula, R.C., Medici, P., Morato, R., 2008. Plano de ação para conservação do ai]lobo-guará. In: Análise de Viabilidade Populacional e Hábitat (PHVA). IBAMA, Brasília.Google Scholar
  40. Paula, R.C., Guimarães, F.H., Queirolo, D., Pinto, R., Lemos, F.G., Rodrigues, L., 2013. Avaliação do estado de conservação do Lobo-guará Chrysocyon brachyurus (Illiger, 1815) no Brasil. Biodivers. Bras. 3 (1), 146–159.Google Scholar
  41. Pautasso, A.A., 2009. Estado de conocimiento y conservación del aguará guazú (Chrysocyon brachyurus) en la provincia de Santa Fe, Argentina. Biológica 11, 1–125.Google Scholar
  42. Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371.Google Scholar
  43. Pliscoff, P., Fuentes-Castillo, T., 2011. Modelación de ladistribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Rev. Geogr. Norte Gd. 48, 61–79.Google Scholar
  44. Prevosti, F.J., Bonomo, M., Tonni, E.P., 2004. La distribución de Chrysocyon bracyurus (Illiger, 1811) (Mammalia: Carnivora: Canidae) durante el Holoceno en la Argentina: implicancias paleoambientales. Mastozool. Neotrop. 11, 27–43.Google Scholar
  45. Quantum GIS Development Team, 2016. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project https://doi.org/qgis.osgeo.orgGoogle Scholar
  46. Queirolo, D., Moreira, J.R., Soler, L., Emmons, L.H., Rodrigues, F.H.G., Pautasso, A.A., Cartes, J.L., Salvatori, V., 2011. Historical and current range of the near threatened Maned wolf Chrysocyon brachyurus in South America. Oryx 45, 296–303.Google Scholar
  47. Queirolo, D., Indrusiak, C., Coelho, L., Cosse, M., Dotta, G., 2014. Maned Wolf conservation in the South of Brazil and Uruguay. In: Consorte-McCrea, A.G., Ferraz Santos, E. (Eds.), Ecology and Conservation of the Maned Wolf. Multidisciplinary Perspectives. CRC Press Taylor and Francis Group, London, pp. 193–202.Google Scholar
  48. R Core Team, URL 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://doi.org/www.R-project.org/.Google Scholar
  49. Real, R., Barbosa, A.M., Porras, D., Kin, M.S., Márquez, A.L., Guerrero, J.C., Palomo, L.J., Justo, E.R., Vargas, J.M., 2003. Relative importance of environment, human activity and spatial situation in determining the distribution of terrestrial mammal diversity in Argentina. J. Biogeogr. 30, 939–947.Google Scholar
  50. Real, R., Barbosa, A.M., Vargas, J.M., 2006. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat. 13, 237–245.Google Scholar
  51. Real, R., Romero, D., Olivero, J., Estrada, A., Márquez, A.L., 2013. Estimating how inflated or obscured effects of climate affect forecasted species distribution. PLoS One 8 (1),  https://doi.org/10.1371/journal.pone.0053646.
  52. Real, R., Barbosa, A.M., Bull, J.W., 2017. Species distributions, quantum theory, and the enhancement of biodiversity measures. Syst. Biol. 66 (3), 453–462.PubMedGoogle Scholar
  53. Rey-Benayas, J.M., De La Montana, E., Belliure, J., Eekhout, X.R., 2006. Identifying areas of high herpetofauna diversity that are threatened by planned infrastructure projects in Spain. J. Environ. Manage. 79, 279–289.Google Scholar
  54. Rojas, A.B., Cotilla, I., Real, R., Palomo, L.J., 2001. Determinación de las áreas probables de distribución de los mamíferos terrestres en la provincia de Málaga. Galemys 13, 217–229.Google Scholar
  55. Romero, D., Olivero, J., Brito, J.C., Real, R., 2016. Comparison of approaches to combine species distribution models based on different sets of predictors. Ecography 39, 561–571.Google Scholar
  56. Soler, L., 2012. Chrysocyon brachyurus (Illiger) Aguará guazú, lobode crín. In: Ojeda, R.A., Chillo, V., Diaz Isenrath, G.B. (Eds.), Libro Rojo de mamíferos de la Argentina. Sociedad Argentina para el estudio de los mamíferos (SAREM), pp. 88.Google Scholar
  57. Soler, L., 2014. Maned wolf in Argentina. In: Consorte-McCrea, A.G., Ferraz Santos, E. (Eds.), Ecology and Conservation of the Maned Wolf. Multidisciplinary perspectives. CRC Press Taylor and Francis Group, London, pp. 203–220.Google Scholar
  58. Soler, L., Orozco, M., Caruso, N., Ciccia, P.G., Pautasso, A., 2015. Presenciay distribución del aguará guazú (Chrysocyon brachyurus) en la Argentina. In: Orozco, M.M., Ciccia, P.G., Soler, L. (Eds.), El aguará guazú, Chrysocyon brachyurus, en la Argentina. Lecciones aprendidas y recomendaciones para su conservación. Fundación de Historia Natural Félix de Azara, Ciudad Autónoma de Buenos Aires, pp. 59–72.Google Scholar
  59. Torres, R., Jayat, J.P., Pacheco, S., 2013. Modelling potential impacts of climate change on the bioclimatic envelope and conservation of the Maned Wolf (Chrysocyon brachyurus). Mamm. Biol. 78, 41–49.Google Scholar
  60. Vynne, C., 2014. Agricultural expansion and the future of the Maned wolf. In: Consorte-McCrea, A.G., Ferraz Santos, E. (Eds.), Ecology and Conservation of the Maned Wolf. Multidisciplinary perspectives. CRC Press Taylor and Francis Group, London, pp. 165–176.Google Scholar
  61. Wald, A., 1943. Tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Trans. Am. Math. Soc. 54, 426–482.Google Scholar
  62. Xavier, M.S., Lemos, H.M., Caccavo, A., Bezerra, A., Secco, H., Gonçalves, P.R., 2017. Noteworthy coastal records of the maned wolf, Chrysocyon brachyurus (Illiger, 1815), in Southeastern Brazil. Bol. Soc. Bras. Mastozool. 78, 9–13.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2018

Authors and Affiliations

  • Lorena Coelho
    • 1
    • 2
  • David Romero
    • 2
    Email author
  • Diego Queirolo
    • 3
  • José Carlos Guerrero
    • 2
  1. 1.Laboratorio Etología, Ecología y EvoluciónInstituto de Investigaciones Biológicas Clemente Estable (IIBCE)MontevideoUruguay
  2. 2.Laboratorio de Desarrollo Sustentable y Gestión Ambiental del Territorio, Instituto de Ecología y Ciencias Ambientales, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Centro Universitario de RiveraUniversidad de la RepúblicaRiveraUruguay

Personalised recommendations