Advertisement

Mammalian Biology

, Volume 92, Issue 1, pp 1–10 | Cite as

Use of space and homesite attendance by Iberian wolves during the breeding season

  • Helena Rio-MaiorEmail author
  • Pedro Beja
  • Mónia Nakamura
  • Francisco Álvares
Original investigation

Abstract

The persistence of large carnivores in human-dominated landscapes is conditional on the preservation of adequate ecological conditions during the reproduction period, when they may be particularly susceptible to human disturbance. However, little is known about the breeding behaviour of large carnivores in these landscapes, though this is important for conservation management. Here we describe the space use and homesite attendance patterns of wolves inhabiting humanised landscapes of north-western Portugal, based on GPS tracking of 11 individuals in 2008–2013. Parturitions (N = 3) occurred in late May, with pups remaining at natal dens for 24–85 days, after which they were moved to a first and then sometimes to a second rendezvous site. Two of these movements were associated with human disturbance events. Breeding females (N = 4) spent a large proportion of time with pups during pre-weaning (≈ 2 months after birth), leaving only at night during short periods; thereafter they progressively reduced time at homesites (i.e, natal dens and rendezvous sites), and increased both daily travel distances and daytime activity. Throughout the pup-rearing season, breeding females restricted their movements to within ≈ 2 km of homesites. Non-breedingfemales (N = 4) showed significantly lower attendance rates than breedingfemales, particularly during pre-weaning, and they had much less restricted movements throughout the breeding season, with activity occurring throughout the circadian cycle. Non-breeding males (N = 3) showed attendance and space-use patterns intermediate between breeding and non-breeding females, with movements largely concentrated within the same areas used by breeding females. Our findings suggest that breeding wolves may be particularly susceptible to human activities occurring within 2 km of homesites, although further research is needed to assess the ultimate effect of such disturbance on reproductive success and pup survival.

Keywords

Breeding behaviour Canis lupus Conservation Human-dominated landscapes Large carnivores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarzuza, L.L., PhD Thesis 2013. Ecología del lobo, del poni salvaje y del ganado vacuno semiextensivo en Galicia: interacciones depredador - presa. Universidad de Santiago de Compostela, Spain (In Spanish).Google Scholar
  2. Ahmadi, M., López-Bao, J.V., Kaboli, M., 2014. Spatial heterogeneity in human activities favors the persistence of wolves in agroecosystems. PLoS One 9(1),  https://doi.org/10.1371/journal.pone.0108080.
  3. Alfredéen, A., Master’s thesis 2006. Denning Behaviour and Movement Pattern During Summer of Wolves Canis lupus on the Scandinavian Peninsula. The Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  4. Álvares, F., Barroso, I., Espírito-Santo, C., Ferrão da Costa, G., Fonseca, C., Godinho, R., Nakamura, M., Petrucci-Fonseca, F., Pimenta, V., Ribeiro, S., Rio-Maior, H., Santos, N., Torres, R., 2015. Action Plan for Wolf Conservation in Portugal -Baseline Knowledge. Technical Report. ICNF/CIBIO-InBio/CE3C/Universidade de Aveiro (In Portuguese).Google Scholar
  5. Álvares, F., Rio-Maior, H., Roque, S., Nakamura, M., Petrucci-Fonseca, F., 2016. Ecological response of breeding wolves to wind farms: insights from two case studies in Portugal. In: Perrow, M.R. (Ed.), Wildlife and Wind Farms: Conflicts and Solutions., vol. 1, pp. 225–227.Google Scholar
  6. Apollonio, M., 2004. Wolves in the casentinesi forests: insights for wolf conservation in Italy from a protected area with a rich wild prey community. Biol. Conserv. 120, 249–260,  https://doi.org/10.1016/j.biocon.2004.02.021.CrossRefGoogle Scholar
  7. Argue, a.M., Mills, K.J., Patterson, B.R., 2008. Behavioural response of eastern wolves (Canis lycaon) to disturbance at homesites and its effects on pup survival. Can. J. Zool. 86, 400–406,  https://doi.org/10.1139/Z08-013.CrossRefGoogle Scholar
  8. Asa, C.S., Valdespino, C., 1998. Canid reproductive biology: an integration of proximate mechanisms and ultimate causes. Am. Zool. 38, 251–259,  https://doi.org/10.1093/icb/38.1.251.CrossRefGoogle Scholar
  9. Ausband, D.E., Mitchell, M.S., Bassing, S.B., Morehouse, A., Smith, D.W., Stahler, D., Struthers,J., 2016. Individual, group, and environmental influences on helping behavior in a social carnivore. Ethology 122, 1–10,  https://doi.org/10.1111/eth.12566.CrossRefGoogle Scholar
  10. Ballard, W.B., Whitman, J.S., Gardner, C.L., 1987. Ecology of an exploited wolf population in South-Central Alaska. Wildl. Monogr. 98, 3–4.Google Scholar
  11. Ballard, W.B., Ayres, LA., Gardener, C.L., Foster, J.W., 1991. Den Site Activity Patterns of Gray Wolves, Canis Lupus, 105. Can. Field-Naturalist, Southcentral Alaska, pp. 497–504.Google Scholar
  12. Bates, D., Mächler, M., Bolker, B., Walker, S., arXiv preprint arXiv:1406.5823 2014. Fitting Linear Mixed-Effects Models Using lme4.Google Scholar
  13. Capitani, C., Mattioli, L., Avanzinelli, E., Gazzola, A., Lamberti, P., Mauri, L., Scandura, M., Viviani, A., Apollonio, M., 2006. Selection of rendezvous sites and reuse of pup raising areas among wolves Canis lupus of north-eastern Apennines, Italy. ActaTheriol. (Warsz) 51, 395–404,  https://doi.org/10.1007/BF03195186.CrossRefGoogle Scholar
  14. Chapman, R.C., M.S. thesis 1977. The Effects of Human Disturbance on Wolves (Canis lupus). University of Alaska, Fairbanks.Google Scholar
  15. Chapron, G., Kaczensky, P., Linnell, J.D.C., von Arx, M., Huber, D., Andren, H., Lopez-Bao, J.V., Adamec, M., Alvares, F., Anders, O., Baliauskas, L., Balys, V., Bed, P., Bego, F., Blanco, J.C., Breitenmoser, U., Broseth, H., Bufka, L., Bunikyte, R., Ciucci, P., Dutsov, A., Engleder, T., Fuxjager, C., Groff, C., Holmala, K., Hoxha, B., Iliopoulos, Y., Ionescu, O., Jeremi, J., Jerina, K., Kluth, G., Knauer, F., Kojola, I., Kos, I., Krofel, M., Kubala,J., Kunovac, S., Kusak, J., Kutal, M., Liberg, O., Maji, A., Mannil, P., Manz, R., Marboutin, E., Marucco, F., Melovski, D., Mersini, K., Mertzanis, Y., Mysajek, R.W., Nowak, S., Odden, J., Ozolins, J., Palomero, G., Paunovi, M., Persson, J., Potonik, H., Quenette, P.Y., Rauer, G., Reinhardt, I., Rigg, R., Ryser, A., Salvatori, V., Skrbinek, T., Stojanov, A., Swenson, J.E., Szemethy, L., Trajce, A., Tsingarska-Sedefcheva, E., Vaa, M., Veeroja, R., Wabakken, P., Wolfl, M., Wolfl, S., Zimmermann, F., Zlatanova, D., Boitani, L., 2014. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346 (6216), 1517–1519,  https://doi.org/10.1126/science.1257553.CrossRefGoogle Scholar
  16. Ciucci, P., Boitani, L., Francisci, F., Andreoli, G., 1997. Home range, activity and movements of a wolf pack in central Italy. J. Zool. 243, 803–819,  https://doi.org/10.1111/j.1469-7998.1997.tb01977.CrossRefGoogle Scholar
  17. Clutton-Brock, T., 2002. Breeding together: kin selection and mutualism in cooperative vertebrates. Science 296, 69–72,  https://doi.org/10.1126/science.296.5565.69.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Courchamp, F., Rasmussen, G.S., Macdonald, D.W., 2002. Small pack size imposes a trade-off between hunting and pup-guarding in the painted hunting dog Lycaonpictus. Behav. Ecol. 13, 20–27,  https://doi.org/10.1093/beheco/13.1.20.CrossRefGoogle Scholar
  19. Demma, D.J., Mech, L.D., 2009. Wolf use of summer territory in Northeastern Minnesota. J. Wildl. Manage. 73, 380–384,  https://doi.org/10.2193/2008-114.CrossRefGoogle Scholar
  20. D’eon, R.G., Delparte, D., 2005. Effects of radio-collar position and orientation on GPS radio-collar performance, and the implications of PDOP in data screening. J. Appl. Ecol. 42, 383–388,  https://doi.org/10.1111/j.1365-2664.2005.01010.x.CrossRefGoogle Scholar
  21. Durant, J.M., Hjermann, D., Ottersen, G., Stenseth, N.C., 2007. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283,  https://doi.org/10.3354/cr033271.CrossRefGoogle Scholar
  22. Frame, P., Cluff, H., Hik, D., 2007. Response of wolves to experimental disturbance at homesites. J. Wildl. Manage. 71 (2), 316–320.CrossRefGoogle Scholar
  23. Fritts, S.H., Mech, L.D., 1981. Dynamics, movements and feeding ecology of a newly protected wolf population in Northwestern Minnesota. Wildl. Monogr. 80, 3–79.Google Scholar
  24. Fuller, T., Sievert, P., 2001. Carnivore demography and the consequences of changes in prey availability. In: Gittleman, J.L., Funk, S.M., Macdonald, D.W., Wayne, R.K. (Eds.), Carnivore Conservation., pp. 163–179, Cambridge.Google Scholar
  25. Gillies, C.S., Hebblewhite, M., Nielsen, S.E., Krawchuk, M.A., Aldridge, C.L., Frair, J.L., et al., 2006. Application of random effects to the study of resource selection by animals. J. Anim. Ecol. 75 (4), 887–898.CrossRefPubMedGoogle Scholar
  26. Gipson, P., Ballard, W., Nowak, R., Mech, D., 2000. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manage. 64, 752–758,  https://doi.org/10.2307/3802745.CrossRefGoogle Scholar
  27. Godinho, R., Llaneza, L., Blanco, J.C., Lopes, S., Álvares, F., García, E., Palacios, V., Cortés, Y., Talegón, J., Ferrand, N., 2011. Genetic evidence for multiple events of hybridization betweem wolves and domestic dogs in the Iberian Peninsula. Mol. Ecol. 20, 5154–5166.CrossRefPubMedGoogle Scholar
  28. Habib, B., Kumar, S., 2007. Den shifting by wolves in semi-wild landscapes in the Deccan Plateau, Maharashtra. India. J. Zool. 272, 259–265,  https://doi.org/10.1111/j.1469-7998.2006.00265.x.CrossRefGoogle Scholar
  29. Haight, R.G., Mladenoff, D.J., Wydeven, A.P., 1998. Modeling disjunct gray wolf populations in semi-wild landscapes. Conserv. Biol. 12, 879–888.CrossRefGoogle Scholar
  30. Harrington, F.H., Paquet, P.C., 1982. In: Harrington, F.H., Mech, L.D. (Eds.), Wolves of the World: Perspectives of Behavior, Ecology, and Conservation. Noyes, Park Ridge, New Jersey, pp. 81–105.Google Scholar
  31. Harrington, F.H., Mech, L.D., Fritts, S.H., 1983. Pack size and wolf pup survival: their relationship under varying ecological conditions. Behav. Ecol. Sociobiol. 13, 19–26.CrossRefGoogle Scholar
  32. ICNF, Available at: 2008. Manual de apoio à análise de projectos relativos à implementação de infra-estruturas lineares. Instituto da Conservação da Natureza e da Biodiversidade, Lisboa,. (In Portuguese) https://doi.org/www.icnf.pt/portal/pn/biodiversidade/ordgest/aa/resource/doc/man-infra-lin.Google Scholar
  33. Iliopoulos, Y., Youlatos, D., Sgardelis, S., 2014. Wolf pack rendezvous site selection in Greece is mainly affected by anthropogenic landscape features. Eur. J. Wildl. Res. 60, 23–34,  https://doi.org/10.1007/s10344-013-0746-3.CrossRefGoogle Scholar
  34. IPMA, 2014. Portugal. In: Instituto Português do Mare da Atmosfera,. (Accessed 11 November 14) https://doi.org/www.ipma.pt/pt/otempo/obs.superficie/.Google Scholar
  35. Jimenez, M.D., Bangs, E.E., Boyd, D.K., Smith, D.W., Becker, S.A., Ausband, D.E., Woodruff, S.P., Bradley, E.H., Holyan, J., Laudon, K., 2017. Wolf dispersal in the rocky mountains, Western United States: 1993–2008. J. Wildl. Manage. 81, 581–592,  https://doi.org/10.1002/jwmg.21238.CrossRefGoogle Scholar
  36. Joslin, P.W.B., 1967. Movements and homesites of timber wolves in Algonquin Park. Am. Zool. 7, 279–288.CrossRefGoogle Scholar
  37. Kreeger, T.J., 2003. The internal wolf: physiology, pathology, and pharmacology. In: Mech, L.D., Boitani, L. (Eds.), Wolves. Behavior, Ecology, and Conservation. The University of Chicago Press, Chicago, pp. 192–217.Google Scholar
  38. Kumar, S., PhD Thesis 1998. Ecology and behavior of Indian grey wolf (Canis lupus pallipes Sykes, 1831) in the Deccan grassland of Sola-pur, Maharashtra, India. Center of Wildlife and Ornithology Alighar Muslim University, Alighar, India, pp. 1–215.Google Scholar
  39. Kusak, J., Skrbinsek, A.M., Huber, D., 2005. Home ranges, movements, and activity of wolves (Canis lupus) in the Dalmatian part of Dinarids, Croatia. Eur. J. Wildl. Res. 51, 254–262,  https://doi.org/10.1007/s10344-005-0111-2.CrossRefGoogle Scholar
  40. Linnell, J.D.C., Swenson, J.E., Andersen, R., Barnes, B., 2000. How vulnerable are denning bears to disturbance? Wildl. Soc. Bull. 28, 400–413.Google Scholar
  41. Linnell, J.D.C., Swenson, J.E., Andersen, R., 2001. Predators and people: conservation of large carnivores is possible at high human densities if management policy is favourable. Anim. Conserv. 4, 345–349.CrossRefGoogle Scholar
  42. Llaneza, L., López-Bao, J.V., Sazatornil, V., 2012. Insights into wolf presence in human-dominated landscapes: the relative role of food availability, humans and landscape attributes. Divers. Distrib. 18, 459–469,  https://doi.org/10.1111/j.1472-4642.2011.00869.x.CrossRefGoogle Scholar
  43. Lopez-Bao, J.V., Kaczensky, P., Linnell, J.D.C., Boitani, L., Chapron, G., 2015. Carnivore coexistence: wilderness not required. Science 348, 870–871,  https://doi.org/10.1126/science.348.6237.871-b.CrossRefGoogle Scholar
  44. Macdonald, D.W., Amlaner, C.J., 1980. A practical guide to radio tracking. In: Amlaner, C.J., Macdonald, D.W. (Eds.), A Handbook on Biotelemetry and Radio Tracking. Pergamon Press, Oxford, UK, pp. 143–159.CrossRefGoogle Scholar
  45. Mech, L.D., 1987. Age, season, distance, direction, and social aspects of wolf dispersal from a Minnesota pack. In: Chepko-Sade, B.D., Halpin, Z.T. (Eds.), Mammalian Dispersal Patterns. University of Chicago Press, Chicago, pp. 55–74.Google Scholar
  46. Mech, L.D., 1970. The Wolf: Ecology and Behavior of an Endangered Species. In: The Wolf: Ecology and Behavior of An Endangered Species. Natural History Press, Doubleday Publishing Co., New York.Google Scholar
  47. Mech, L.D., 1995. The challenge and opportunity of recovering wolf populations. Conserv. Biol. 9, 270–278,  https://doi.org/10.1046/j.1523-1739.1995.9020270.x.CrossRefGoogle Scholar
  48. Mech, L.D., 1999. Alpha Status, dominance, and division of labor in wolf packs. Can. J. Zool., 1196–1203.Google Scholar
  49. Mech, L.D., 2002. Breeding season of wolves, Canis lupus, in relation to latitude. Can. Field-Nat. 116, 139–140.Google Scholar
  50. Mech, L.D., 2006. Age-related body mass and reproductive measurements of gray wolves in Minnesota. J. Mammal. 87, 80–84.CrossRefGoogle Scholar
  51. Mech, L.D., Wolf, P.C., Packard, J.M., 1999. Regurgitative food transfer among wild wolves. Can. J. Zool. 77, 1192–1195.CrossRefGoogle Scholar
  52. Mech, L.D., Boitani, L., 2003. Wolf social ecology. In: Mech, L.D., Boitani, L. (Eds.), Wolves: Behavior, Ecology, and Conservation., pp. 1–34, Chicago, IL.Google Scholar
  53. Moen, R., Pastor, J., Cohen, Y., 1997. Accuracy of GPS telemetry collar locations with differential correction. J. Wildl. Manage. 61, 530–539,  https://doi.org/10.2307/3802612.CrossRefGoogle Scholar
  54. Moreira, L.M., MSc Thesis 1992. Contribução para o estudio da ecología do lobo no Parque Natural de Montesinho. Faculdade de Ciências da Universidade de Lisboa.Google Scholar
  55. Nielson, R.M., Manly, B.F.J., Mcdonald, L.L., Sawyer, H., Mcdonald, T.L., 2009. Estimating habitat selection when GPS fix success is less than 100%. Ecology 90, 2956–2962,  https://doi.org/10.1890/08-1562.1.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nishida, T., 1968. The social group of wild chimpanzees in the Mahali Mountains. Primates 9, 167–224,  https://doi.org/10.1007/BF01730971.CrossRefGoogle Scholar
  57. Nonaka, Y., Msc Thesis 2011. Response of Breeding Wolves to Human Disturbance on Den Sites—an Experiment. Uppsala University, Grimso forskingsstaion.Google Scholar
  58. Ordiz, A., Støen, O.G., Delibes, M., Swenson, J.E., 2011. Predators or prey? Spatio-temporal discrimination of human-derived risk by brown bears. Oecologia 166, 59–67,  https://doi.org/10.1007/s00442-011-1920-5.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pacheco, C., Rio-Maior, H., Nakamura, M., Álvares, F., Godinho, R., 2016. Social dynamic patterns may trigger population structure in iberian wolves. In: IV Congresso Ibérico Do Lobo. Escola Superior Agrária do Instituto Politécnico de Castelo Branco. Castelo Branco, Portugal.Google Scholar
  60. Packard, J.M., 2003. Wolf behavior: reproductive, social and intelligent. In: Mech, L.D., Boitani, L. (Eds.), Wolves: Behavior, Ecology, and Conservation, pp. 35–65.Google Scholar
  61. Passoni, G., Rowcliffe,J.M., Whiteman, A., Huber, D., 2017. Framework for strategic wind farm site priorisation based on modelled wolf reproduction habitat in Croatia. Eur. J. Wildl. Res. 63 (1), 1–16.CrossRefGoogle Scholar
  62. Person, D.K., Russell, A.L., 2009. Reproduction and Den site selection by wolves in a disturbed landscape. Northwest. Sci. 83, 211–224,  https://doi.org/10.3955/046.083.0305.CrossRefGoogle Scholar
  63. Peterson, R.O., Page, R.E., Dodge, K.M., 1984. Wolves, moose, and the allometry of population cycles. Science 224 (4655), 1350–1352.CrossRefPubMedGoogle Scholar
  64. Petrucci-Fonseca, F., PhD Thesis 1990. O lobo (Canis lupus signatus Cabrera, 1907) em Portugal. Faculdade de Ciências da Universidade de Lisboa (In Portuguese).Google Scholar
  65. Pimenta, V., Barroso, I., Boitani, L., Beja, P., 2017. Wolf predation on cattle in Portugal: assessing the effects of husbandry systems. Biol. Conserv. 207, 17–26.CrossRefGoogle Scholar
  66. PORDATA, Portugal. 2014. Base de dados Portugal Contemporâneo,. (Accessed 11 November 14) https://doi.org/www.pordata.pt/Portugal.Google Scholar
  67. R Development Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://doi.org/www.R-project.org.Google Scholar
  68. Rio-Maior, H., Malveiro, E., Petrucci-Fonseca, F., 2006. O lobo e o gado extensivo no Noroeste de Portugal. Centro de Biologia Ambiental, Lisbon, Lisboa, Technical report. (In Portuguese).Google Scholar
  69. Rio-Maior, H., Godinho, R., Álvares, F., 2011. Projecto de Investigação e Conservação do lobo no Noroeste de Portugal. CIBIO, University of Porto, Technical Report. (In Portuguese).Google Scholar
  70. Rio-Maior, H., Beja, P., Nakamura, M., Santos, N., Brandão, R., Sargo, R., Dias, I., Silva, F., Álvares, F., 2016. Rehabilitation and post-release monitoring of two wolves with severe injuries. J. Wildl. Manage. 80 (4), 729–735,  https://doi.org/10.1002/jwmg.1055.CrossRefGoogle Scholar
  71. Ruprecht, J.S., Ausband, D.E., Mitchell, M.S., Garton, E.O., Zager, P., 2012. Homesite attendance based on sex, breeding status, and number of helpers in gray wolf packs. J. Mammal. 93, 1001–1005,  https://doi.org/10.1644/11-MAMM-A-330.1.CrossRefGoogle Scholar
  72. Santos, N., Rio-Maior, H., Nakamura, M., Roque, S., Brandão, R., Álvares, F., 2017. Characterization and minimization of the stress response to trapping in free-ranging wolves (Canis lupus): insights from physiology and behavior. Stress,  https://doi.org/10.1080/10253890.2017.1368487.Google Scholar
  73. Sazatornil, V., Rodríguez, A., Klaczek, M., Ahmadi, M., Álvares, F., Arthur, S., Blanco, J.C., Borg, B.L., Cluff, D., Cortés, Y., García, E.J., Geffen, E., Habib, B., Iliopoulos, Y., Kaboli, M., Krofel, M., Llaneza, L., Marucco, F., Oakleaf, J.K., Person, D.K., Potocnik, H., Razen, N., Rio-Maior, H., Sand, H., Unger, D., Wabakken, P., López-Bao, J.V., 2016. The role of human-related risk inbreeding site selection by wolves. Biol. Conserv. 201, 103–110,  https://doi.org/10.1016/j.biocon.2016.06.022.CrossRefGoogle Scholar
  74. Schmidt, K., Jędrzejewski, W., Theuerkauf, J., Kowalczyk, R., Okarma, H., Jędrzejewska, B., 2008. Reproductive behaviour of wild-living wolves in Białowieza Primeval Forest (Poland). J. Ethol. 26, 69–78,  https://doi.org/10.1007/s10164-006-0031-y.CrossRefGoogle Scholar
  75. Schumacker, R.E., 2014. Learning Statistics Using R. SAGE Publications, Los Angeles.Google Scholar
  76. Sidorovich, V., Schnitzler, A., Schnitzler, C., Rotenko, I., 2017. Wolf denning behaviour in response to external disturbances and implications for pup survival. Mamm. Biol. 87, 89–92,  https://doi.org/10.1016/j.mambio.2016.11.011.CrossRefGoogle Scholar
  77. Sikes, R.S., Gannon, W.L., Mammalogists, T.A.C., U.C. of the A.S. of, 2011. Guidelines of the American Society of Mammalogists forthe use of wild mammals in research. J. Mammal. 92, 235–253,  https://doi.org/10.1644/10-MAMM-F-355.1.CrossRefGoogle Scholar
  78. Smith, D., Meier, T., Geffen, E.H., Mech, L.D., Angeles, L., Park, N., Burch, J.W., Adams, L.G., Wayne, R.K., 1997. Is incest common in gray wolf packs? Behav. Ecol. 8, 384–391,  https://doi.org/10.1093/beheco/8.4.384.CrossRefGoogle Scholar
  79. SNIRH, Portugal. 2014. Sistema Nacional de Informação de Recursos Hídricos,. (Accessed 11 November 14) https://doi.org/snirh.apambiente.pt/index.php?idMain=2&idItem=1.Google Scholar
  80. Sparkman, A.M., Adams, J.R., Steury, T.D., Waits, L.P., Murray, D.L., 2011. Helper effects on pup lifetime fitness in the cooperatively breeding red wolf (Canis rufus). Proc. R. Soc. B Biol. Sci. (278), 1381–1389,  https://doi.org/10.1098/rspb.2010.1921.Google Scholar
  81. Theuerkauf, J., Jedrzejewski, W., Schmidt, K., Gula, R., 2003a. Spatiotemporal segregation of wolves from humans in the Bialowieza Forest (Poland). J. Wildl. Manage. 67, 706–716,  https://doi.org/10.2307/3802677.CrossRefGoogle Scholar
  82. Theuerkauf, J., Rouys, S., Jedrzejewski, W., 2003b. Selection of den, rendezvous, and resting sites by wolves inthe Bialowieza Forest. Pol. Can. J. Zool. 81, 163–167,  https://doi.org/10.1139/z02-190.CrossRefGoogle Scholar
  83. Theuerkauf, J., 2009. What drives wolves: fear or hunger? Humans, diet, climate and wolf activity patterns. Ethology 115, 649–657,  https://doi.org/10.1111/j.1439-0310.2009.01653.x.CrossRefGoogle Scholar
  84. Thiel, R.P., Merrill, S., Mech, L.D., 1998. Tolerance by denning wolves, Canis lupus, to human disturbance. Can. Field-Nat. 112, 340–342.Google Scholar
  85. Thurston, L., 2002. Homesite Attendance as a Measure of Alloparental and Parental Care by Gray Wolves (Canis Lupus) in Northern Yellowstone National Park. A&M University, College Station, Texas.Google Scholar
  86. Torres, R.T., Fonseca, C., 2016. Perspectives onthe Iberian wolf in Portugal: population trends and conservation threats. Biodivers. Conserv. 25 (3), 411–425.CrossRefGoogle Scholar
  87. Torres, R.T., Ferreira, E., Rocha, R.G., Fonseca, C., 2017. Hybridization between wolf and domestic dog: first evidence from an endangered population in central Portugal. Mammal. Biol.-Zeitschrift für Säugetierkunde 86, 70–74.CrossRefGoogle Scholar
  88. Treves, A., Karanth, K.U., 2003. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499.CrossRefGoogle Scholar
  89. Tsunoda, H., Gula, R., Theuerkauf, J., Rouys, S., Radler, S., Pirga, B., Eggermann, J., Brzezowska, B., 2009. How does parental role influence the activity and movements of breeding wolves? J. Ethol. 27, 185–189,  https://doi.org/10.1007/s10164-008-0106-z.CrossRefGoogle Scholar
  90. Van Ballenberghe, V., 1983. Extraterritorial movements and dispersal of wolves in Southcentral Alaska. J. Mammal. 64, 168–171.CrossRefGoogle Scholar
  91. Vaz, C., Travassos, P., Cabral, A., Santos, M., Cabral, J.A., 2007. Simulating the impact of socio-economic trends on threatened Iberian wolf populations Canis lupus signatus in north-eastern Portugal. Ecol. Indic. 7, 649–664,  https://doi.org/10.1016/j.ecolind.2006.07.004.CrossRefGoogle Scholar
  92. Vilà, C., Urios, V., Castroviejo, J., Pp. 335–340 1995. Observations on the daily activity patterns in the Iberian wolf. In: Carbyn, L., Fritts, S.H., Seip, D.R. (Eds.), Ecology and Conservation of Wolves in a Changing World. Canadian Circumpolar Institute, Alberta, pp. 335–340.Google Scholar
  93. Vos, J., 2000. Food habits and livestock depredation of two Iberian wolf packs (Canis lupus signatus) in the north of Portugal. J. Zool. 251, 457–462.CrossRefGoogle Scholar
  94. Zimmermann, B., Nelson, L., Wabakken, P., Sand, H., Liberg, O., 2014. Behavioral responses of wolves to roads: scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364,  https://doi.org/10.1093/beheco/aru134.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2018

Authors and Affiliations

  • Helena Rio-Maior
    • 1
    Email author
  • Pedro Beja
    • 1
    • 2
  • Mónia Nakamura
    • 1
  • Francisco Álvares
    • 1
  1. 1.CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
  2. 2.CEABN/InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de AgronomiaUniversidade de LisboaLisboaPortugal

Personalised recommendations