Advertisement

Mammalian Biology

, Volume 87, Issue 1, pp 168–175 | Cite as

Determinants of smooth-coated otter occupancy in a rapidly urbanizing coastal landscape in Southeast Asia

  • Anucha KamjingEmail author
  • Dusit Ngoprasert
  • Robert Steinmetz
  • Wanlop Chutipong
  • Tommaso Savini
  • George A. Gale
Original investigation

Abstract

Urbanization often has negative impacts on wildlife, nevertheless many species can persist in heavily modified habitats. Understanding factors that promote species persistence in urbanizing landscapes is therefore important for maintaining biodiversity in changing landscapes and may inform more biodiversity-friendly development. We investigated effects of landscape-scale variables on habitat occupancy of Smooth-coated otter (Lutrogale perspicillata) in the Inner Gulf of Thailand. In this internationally important wetland complex, 86% of natural habitats have been altered and are now highly urbanized. We conducted track and sign surveys in 60, 25 km2 grid cells encompassing 1,474 km2. Within each cell, we quantified the landscape cover types including urban areas, natural habitat (predominately thin ribbons of mangrove along waterways), agriculture, aquaculture, and potential prey availability using a GIS and field surveys. We used occupancy models to identify habitat variables that affected probability of detection and occupancy. Estimated otter occupancy, based on the top model, was 0.33 ±0.07 (95% CI 0.18–0.48) and detection probability was 0.50 ± 0.05 (95% CI 0.41–0.60). Otter occupancy was positively associated with the proportion of natural habitat and the cover of traditional aquaculture ponds, but negatively associated with agriculture and urban cover. The remaining natural patches appear to act as critical refuges for otter, allowing them to persist in an otherwise heavily transformed landscape. Because aquaculture ponds are likely important prey sources for otters, it may lead to conflict with aquaculture farmers. Further studies of feeding and movement patterns in cooperation with aquaculture farmers would be beneficial for developing detailed management plans for the species in this human dominated landscape.

Keywords

Aquaculture Inner Gulf of Thailand Occupancy Smooth-coated otter Urbanization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adámek, Z., Kortan, D., Lepic, P., Andreji, J., 2003. Impacts of otter (Lutra lutra L.) predation on fishponds: a study of fish remains at ponds in the Czech Republic. Aquacult. Int. 11, 389–396.CrossRefGoogle Scholar
  2. Ali, H., Saleem, R., Qamer, F.M., Khan, W.A., Abbas, S., Gunasekara, K., Hazarika, M., Ahmed, M.S., Akhtar, M., 2010. Habitat evaluation of smooth-coated Otter (Lutrogale perspicillata) in Indus plains of Pakistan using remote sensing and GIS. ISPRSJ Photogramm Remote Sens 38, 127–132.Google Scholar
  3. Anoop, K., Hussain, S., 2005. Food and feeding habits of smooth-coated otters (Lutra perspicillata) and their significance to the fish population of Kerala, India. J. Zool. 266, 15–23.CrossRefGoogle Scholar
  4. Belton, B., Little, D., 2008. The development of aquaculture in Central Thailand: domestic demand versus export-led production. J. Agrar Change 8, 123–143.CrossRefGoogle Scholar
  5. Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G., 2002. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923.CrossRefGoogle Scholar
  6. Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New York.Google Scholar
  7. Cade, B.S., 2015. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382.PubMedCrossRefGoogle Scholar
  8. Chanin, P., 2006. Otter road casualties. Hystrix Ital. J. Mammal. 17, 79–90.Google Scholar
  9. Cheevaporn, V., Menasveta, P., 2003. Water pollution and habitat degradation in the Gulf of Thailand. Mar. Pollut. Bull. 47, 43–51.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chutipong, W., Tantipisanuh, N., Ngoprasert, D., Lynam, A.J., Steimetz, R., Jenks, K.E., Grassman, L.I.J., Tewes, M., Kitamura, S., Baker, M.C., Mcshea, W., Bhumpakphan, N., Sukmasuang, R.G.G.A., Harich, F.K., Treydte, A.C., Cutter, P., Cutter, P.B., Suwanrat, S., Siripattaranukul, K., Hala-Bala Wildlife Research Station, Wildlife Research Division, Duckworth, I.W., 2014. Current distribution and conservation status of small carnivores in Thailand: a baseline review. Small Carniv. Conserv. 51, 96–136.Google Scholar
  11. Crooks, K., Riley, S., Gehrt, S., Gosselink, T., Van Deelen, T., 2010. Community ecology of urban carnivores. In: Gehrt, S., Riley, S., Cypher, B. (Eds.), Urban Carnivores: Ecology, Conflict, and Conservation. Johns Hopkins University Press, Baltimore, Maryland, pp. 185–196.Google Scholar
  12. De Silva, P., Khan, W.A., Kanchanasaka, B., Reza, L.I., Feeroz, M.M., Al-Sheikhly, O.F., 2015. Lutrogale perspicillata. The IUCN Red List of Threatened Species, http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T12427A21934884.en (accessed 30.09.15).Google Scholar
  13. Department of Marine and Coastal Resources, 2015. Central Database System and Data Standard for Marine and Coastal Resources http://marinegiscenter.dmcr.go.th/ (accessed 30.09.15).Google Scholar
  14. Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46.CrossRefGoogle Scholar
  15. ESRI, 2008. ArcGIS 9.3. Environmental Systems Research Institute, Redlands.Google Scholar
  16. Fiske, I., Chandler, R., 2011. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23.Google Scholar
  17. Flaherty, M., Karnjanakesorn, C., 1995. Marine shrimp aquaculture and natural resource degradation in Thailand. Environ. Manag. 19, 27–37.CrossRefGoogle Scholar
  18. Foster-Turley, P., 1992. Conservation aspects of the ecology of Asian small-clawed and smooth otters on the Malay peninsulas. IUCN Otter Spec. Group Bull. 7, 26–29.Google Scholar
  19. Freitas, D., Gomes, J., Luis, T.S., Madruga, L., Marques, C., Baptista, G., Rosalino, L., Antunes, P., Santos, R., Santos-Reis, M., 2007. Otters and fish farms in the Sado estuary: ecological and socio-economic basis of a conflict. Hydrobiologia 587, 51–62.CrossRefGoogle Scholar
  20. Haque, N., Vijayan, V., 1995. Food habits of the Smooth Indian Otter (Lutra perspicillata) in Keoladeo National Park, Bharatpur, Rajasthan (India). Mammalia 59, 345–348.Google Scholar
  21. Huitric, M., Folke, C., Kautsky, N., 2002. Development and government policies of the shrimp farming industry in Thailand in relation to mangrove ecosystems. Ecol. Econ. 40, 441–455.CrossRefGoogle Scholar
  22. Hussain, S., 1996. Group size, group structure and breeding in Smooth-coated Otter Lutra perspicillata Geoffroy (Carnivora Mustelidae) in National Chambal Sanctuary, India. Mammalia 60, 289–298.CrossRefGoogle Scholar
  23. Hussain, S., Choudhury, B., 1995. Seasonal movement, home range, and habitat use by Smooth-coated Otters in National Chambal Sanctuary, India. In: Reuther, C., Rowe-Rowe, D. (Eds.), Proceedings VI. International Otter Colloquium, Pietermaritzburg 1993. Aktion Fischotterschutz Hankensbuettel. Habitat., pp. 45–55.Google Scholar
  24. Irwin, E.G., Bockstael, N.E., 2007. The evolution of urban sprawl: evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. U. S. A., 20672–20677.Google Scholar
  25. Karanth, K.U., Gopalaswamy, A.M., Kumar, N.S., Vaidyanathan, S., Nichols, J.D., MacKenzie, D.I., 2011. Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. J. Appl. Ecol. 48, 1048–1056.CrossRefGoogle Scholar
  26. Kendall, W.L., White, G.C., 2009. A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy. J. Appl. Ecol. 46, 1182–1188.Google Scholar
  27. Kruuk, H., Kanchanasaka, B., O’Sullivan, S., Wanghongsa, S., 1993. Identification of tracks and other sign of three species of otter Lutra lutra, L. perspicillata and Aonyx cinerea in Thailand. Nat. Hist. Bull. Siam Soc. 41, 23–30.Google Scholar
  28. Lanszki, J., Körmendi, S., 1996. Otter diet in relation to fish availability in a fish pond in Hungary. Acta Theriol. 41, 127–136.CrossRefGoogle Scholar
  29. Lekagul, B., McNeely, J., 1977. Family mustelidae. Mammals Thail., 551–561.Google Scholar
  30. Lemarchand, C., Rosoux, R., Berny, P., 2010. Organochlorine pesticides, PCBs, heavy metals and anticoagulant rodenticides in tissues of Eurasian otters (Lutra lutra) from upper Loire River catchment (France). Chemosphere 80, 1120–1124.PubMedCrossRefPubMedCentralGoogle Scholar
  31. MacKenzie, D.I., Bailey, L.L., 2004. Assessing the fit of site-occupancy models. J. Agricult. Biol. Environ. Stat. 9, 300–318.CrossRefGoogle Scholar
  32. MacKenzie, D.I., Nichols, J., Royle,J., Pollock, K., Bailey, L., Hines, J., 2006. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Academic Press.Google Scholar
  33. MacKenzie, D.I., Royle, J.A., 2005. Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114.CrossRefGoogle Scholar
  34. Manopawitr, P., Round, P., 2004. Thailand’s greatest wetland under imminent threat. Birding Asia, 74–77.Google Scholar
  35. McGregor, A., 2008. Southeast Asian Development. Routledge.CrossRefGoogle Scholar
  36. R Development Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.Google Scholar
  37. Rempel, R., Kaukinen, D., Carr, A., 2012. Patch Analyst and Patch Grid. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, Thunder Bay, Ontario.Google Scholar
  38. Reuther, C., Dolch, D., Green, R., Jahrl, J., Jefferies, D., Krekemeyer, A., Kucerova, M., Madsen, A., Romanowski, J., Roche, K., 2000. Surveying and monitoring distribution and population trends of the Eurasian otter (Lutra lutra): guidelines and evaluation of the standard method for surveys as recommended by the European Section of the IUCN/SSC Otter Specialist Group. Gruppe Naturschutz.Google Scholar
  39. Rosas-Ribeiro, P.F., Rosas, F.C., Zuanon, J., 2012. Conflict between fishermen and giant otters Pteronura brasiliensis in Western Brazilian Amazon. Biotropica 44, 437–444.CrossRefGoogle Scholar
  40. Seto, K.C., Güneralp, B., Hutyra, L.R., 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. U. S. A. 109, 16083–16088.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Singkran, N., Sudara, S., 2005. Effects of changing environments of mangrove creeks on fish communities at Trat Bay, Thailand. Environ. Manag. 35, 45–55.CrossRefGoogle Scholar
  42. Srivathsa, A., Karanth, K.K., Jathanna, D., Kumar, N.S., Karanth, K.U., 2014. On a dhole trail: examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western Ghats of India. PLOS ONE 9, e98803.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Strayer, D.L., Beighley, R.E., Thompson, L.C., Brooks, S., Nilsson, C., Pinay, G., Naiman, R.J., 2003. Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6, 407–423.CrossRefGoogle Scholar
  44. Thai Land Development Department, 2008-2009. Land Use Analysis Unit 1 https://www.ldd.go.th (accessed 30.10.13).Google Scholar
  45. Thakur, D.P., Lin, C.K., 2003. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacult. Eng. 27, 159–176.CrossRefGoogle Scholar
  46. Theng, M., Sivasothi, N., 2016. The smooth-coated otter Lutrogale perspicillata (Mammalia: Mustelidae) in Singapore: establishment and expansion in natural and semi-urban environments. IUCN Otter Spec. Group Bull. 33, 37–49.Google Scholar
  47. Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  • Anucha Kamjing
    • 1
    Email author
  • Dusit Ngoprasert
    • 1
  • Robert Steinmetz
    • 2
  • Wanlop Chutipong
    • 1
  • Tommaso Savini
    • 1
  • George A. Gale
    • 1
  1. 1.Conservation Ecology ProgramKing Mongkut’s University of Technology ThonburiBangkokThailand
  2. 2.World Wide Fund for Nature - ThailandBangkokThailand

Personalised recommendations