Mammalian Biology

, Volume 87, Issue 1, pp 71–88 | Cite as

Identifying biodiversity hotspots for threatened mammal species in Iran

  • Azita FarashiEmail author
  • Mitra Shariati
  • Mahshid Hosseini
Original investigation


Conservation biology has much more attention for biodiversity hot spots than before. In order to recognize the hotspots for Iranian terrestrial mammal species that are listed in any red list, nationally or globally, ten Species Distribution Models (SDMs) have been applied. The SDMs evaluation results based on the TSS and AUC values showed that all ten models of habitat suitability perform significantly better than the random selection for all studied species. According to the results, biodiversity hotspots for threatened mammal species are located in north, west and central of Iran, along the Zagros and Alborz mountain range. Therefore, habitats for threatened mammal species have been limited to small parts of Iran (approximately 27% of the country). These areas are severely fragmented and only 57% of them have been announced protected by the current conservation system. The suggestion is that, as the sustainability of these habitats would strongly depend on maintaining dispersal corridors to facilitate the movement of animals among the habitat fragments, conservation efforts should focus on those hotspots which are not formally protected under conservation laws.


Conservation Habitat Model Protected area SDMs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223–1232.CrossRefGoogle Scholar
  2. Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D., Thuiller, W., 2011. Climate change threatens European conservation areas. Ecol. Lett. 14(5), 484–492.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bashari, H., Hemami, M.R., 2013. A predictive diagnostic model for wild sheep (Ovis orientalis) habitat suitability in Iran. J. Nat. Conserv. 21(5), 319–325.CrossRefGoogle Scholar
  4. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15(4), 365–377.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bosso, L., Mucedda, M., Fichera, G., Kiefer, A., Russo, D., 2016. A gap analysis for threatened bat populations on Sardinia. Hystrix Ital. J. Mammal. 27(2).Google Scholar
  6. Breiman, L., 2001. Random forests. Mach. Learn. 45(1), 5–32.CrossRefGoogle Scholar
  7. Brummitt, N., Lughadha, E.N., 2003. Biodiversity: where’s hot and where’s not. Conserv. Biol. 17(5), 1442–1448.CrossRefGoogle Scholar
  8. Busby, J.R., 1991. In: Margules, C.R., Austin, M.P. (Eds.), BIOCLIM - A Bioclimatic Analysis and Prediction System. Nature Conservation: Cost Effective Biological Surveys and Data Analysis CSIRO, Canberra, pp. 64–68.Google Scholar
  9. Catullo, G., Masi, M., Falcucci, A., Maiorano, L., Rondinini, C., Boitani, L., 2008. A gap analysis of Southeast Asian mammals based on habitat suitability models. Biol. Conserv. 141(11), 2730–2744.CrossRefGoogle Scholar
  10. Cushman, S.A., McRae, B., Adriaensen, F., Beier, P., Shirley, M., Zeller, K., 2013. Biological Corridors and Connectivity (Chapter 21). Department of Environment of Iran, 2015. The Fifth National Report to the Convention on Biological Diversity (86 pp).Google Scholar
  11. Djamali, M., Baumel, A., Brewer, S., Jackson, S.T., Kadereit, J.W., López-Vinyallonga, S., et al., 2012. Ecological implications of Cousinia Cass. (Asteraceae) persistence through the last two glacial-interglacial cycles in the continental Middle East forthe Irano-Turanian flora. Rev. Palaeobot. Palynol. 172, 10–12.CrossRefGoogle Scholar
  12. Dobson, A., Lodge, D., Alder, J., Cumming, G.S., Keymer, J., McGlade, J., et al., 2006. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87(8), 1915–1924.PubMedCrossRefGoogle Scholar
  13. Doko, T., Fukui, H., Kooiman, A., Toxopeus, A.G., Ichinose, T., Chen, W., Skidmore, A.K., 2011. Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecol. Modell. 222(3), 748–761.CrossRefGoogle Scholar
  14. Domisch, S., JAeHNIG, S.C., Haase, P., 2011. Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biol. 56(10), 2009–2020.CrossRefGoogle Scholar
  15. Eastman, J.R., 2001. Guide to GIS and Image Processing Volume. Clark University, USA.Google Scholar
  16. Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697.CrossRefGoogle Scholar
  17. Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77(4), 802–813.PubMedCrossRefGoogle Scholar
  18. Erfanian, B., Mirkarimi, S.H., Mahini, A.S., Rezaei, H.R., 2013. A presence-only habitat suitability model for Persian leopard Panthera pardus saxicolor in Golestan National Park, Iran. Wildlife Biol. 19(2), 170–178.CrossRefGoogle Scholar
  19. Farashi, A., Najafabadi, M.S., 2015. Modeling the spread of invasive nutrias (Myocastor coypus) over Iran. Ecol. Complexity 22, 59–64.CrossRefGoogle Scholar
  20. Farashi, A., Parvian, N., Najafabadi, M.S., 2016. Land use and land cover change in protected areas: using remote sensing to survey suitable habitats of brown bear Ursus arctos. Polish J. Ecol. 64, 420–430.CrossRefGoogle Scholar
  21. Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24 (01), 38–49.CrossRefGoogle Scholar
  22. Franklin, J., 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press.CrossRefGoogle Scholar
  23. Friedman, J.H., 1991. Multivariate adaptive regression splines. Ann. Stat, 1–67.Google Scholar
  24. Gholamifard, A., 2011. Endemism in the reptile fauna of Iran. Iran. J. Anim. Biosyst. 7(1), 13–29.Google Scholar
  25. Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8(9), 993–1009.CrossRefGoogle Scholar
  26. Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Modell. 157(2), 89–100.CrossRefGoogle Scholar
  27. Hastie, T., Tibshirani, R., Buja, A., 1994. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 89(428), 1255–1270.CrossRefGoogle Scholar
  28. Hoffmann, M., Belant, J.L., Chanson, J.S., Cox, N.A., Lamoreux, J., Rodrigues, A.S., et al., 2011. The changing fates of the world’s mammals. Philos. Trans. R. Soc. London B: Biol. Sci. 366(1578), 2598–2610.CrossRefGoogle Scholar
  29. Hosseinzadeh, M.S., Aliabadian, M., Rastegar-Pouyani, E., Rastegar-Pouyani, N., 2014. The roles of environmental factors on reptile richness in Iran. Amphibia-Reptilia 35(2), 215–225.CrossRefGoogle Scholar
  30. Huang, J., Huang, J., Liu, C., Zhang, J., Lu, X., Ma, K., 2016. Diversity hotspots and conservation gaps forthe Chinese endemic seed flora. Biol. Conserv. 198, 104–112.CrossRefGoogle Scholar
  31. IUCN Standards and Petitions Subcommittee, 2016. Guidelines for Using the IUCN Red List Categories and Criteria Version 2. Prepared by the Standards and Petitions Subcommittee. Error! Hyperlink reference not valid. Error! Hyperlink reference not valid..Google Scholar
  32. Jowkar, H., Ostrowski, S., Tahbaz, M., Zahler, P., 2016. The conservation of biodiversity in Iran: threats, challenges and hopes. Iran. Stud. 49(6), 1065–1077.CrossRefGoogle Scholar
  33. Karami, M., Ghadirian, T., Faizolahi, K., 2015. The Atlas of the Mammals of Iran. Iran Department of the Environment, Tehran, Iran.Google Scholar
  34. Ko, C.Y., Murphy, S.C., Root, T.L., Lee, P.F., 2014. An assessment of the efficiency of protection status through determinations of biodiversity hotspots based on endemic bird species, Taiwan. J. Nat. Conserv. 22(6), 570–576.CrossRefGoogle Scholar
  35. Lek, S., Guégan, J.F., 1999. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Modell. 120(2), 65–73.CrossRefGoogle Scholar
  36. Luque, G.M., Bellard, C., Bertelsmeier, C., Bonnaud, E., Genovesi, P., Simberloff, D., Courchamp, F., 2014. The 100th of the world’s worst invasive alien species. Biol. Invasions 16(5), 981–985.CrossRefGoogle Scholar
  37. Makhdoum, M.F., 2008. Management of protected areas and conservation of biodiversity in Iran. Int. J. Environ. Stud. 65(4), 563–585.CrossRefGoogle Scholar
  38. Makki, T., Fakheran, S., Moradi, H., Iravani, M., Senn, J., 2013. Landscape-scale impacts of transportation infrastructure on spatial dynamics of two vulnerable ungulate species in Ghamishloo Wildlife Refuge, Iran. Ecol. Indic. 31, 6–14.CrossRefGoogle Scholar
  39. Meller, L., Cabeza, M., Pironon, S., Barbet- Massin, M., Maiorano, L., Georges, D., Thuiller, W., 2014. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Divers. Distrib. 20(3), 309–321.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., et al., 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography 37(12), 1267–1281.CrossRefGoogle Scholar
  41. Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M., Gascon, C., 2011. Global biodiversity conservation: the critical role of hotspots. In: Biodiversity Hotspots. Springer, Berlin Heidelberg, pp. 3–22.CrossRefGoogle Scholar
  42. Mohammadi, H., Karami, M., Kiabi, B.H., Monavari, S.M., 2015. Assessing Regional Habitat Changes forthe Persian fallow deer (Dama dama mesopotamicus) using maximum entropy modeling approach in Khouzestan province, Iran. Int. J. Environ. Res. 9(2), 753–760.Google Scholar
  43. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853–858.CrossRefGoogle Scholar
  44. Noroozi, J., Akhani, H., Breckle, S.W., 2008. Biodiversity and phytogeography of the alpine flora of Iran. Biodivers. Conserv. 17(3), 493–521.CrossRefGoogle Scholar
  45. Noroozi, J., Moser, D., Essl, F., 2016. Diversity, distribution, ecology and description rates of alpine endemic plant species from Iranian mountains. Alp. Bot. 126(1), 1–9.CrossRefGoogle Scholar
  46. Orme, C.D.L., Davies, R.G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V.A., et al., 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436(7053), 1016–1019.CrossRefGoogle Scholar
  47. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3), 231–259.CrossRefGoogle Scholar
  48. Platts, P.J., McClean, C.J., Lovett, J.C, Marchant, R., 2008. Predicting tree distributions in an East African biodiversity hotspot: model selection: data bias and envelope uncertainty. Ecol. Modell. 218(1), 121–134.CrossRefGoogle Scholar
  49. Renner, I.W., Warton, D.I., 2013. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69(1), 274–281.PubMedCrossRefGoogle Scholar
  50. Rodrigues, A.S., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Cowling, R.M., et al., 2004. Effectiveness of the global protected area network in representing species diversity. Nature 428(6983), 640–643.CrossRefGoogle Scholar
  51. Roscioni, F., Rebelo, H., Russo, D., Carranza, M.L., Di Febbraro, M., Loy, A., 2014. A modelling approach to infer the effects of wind farms on landscape connectivity for bats. Landscape Ecol. 29(5), 891–903.CrossRefGoogle Scholar
  52. Royle, J.A., Chandler, R.B., Yackulic, C., Nichols, J.D., 2012. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol. Evol. 3(3), 545–554.CrossRefGoogle Scholar
  53. Russo, D., Di Febbraro, M., Cistrone, L., Jones, G., Smeraldo, S., Garonna, A.P., Bosso, L., 2015. Protecting one, protecting both? Scale-dependent ecological differences in two species using dead trees, the rosalia longicorn beetle and the barbastelle bat. J. Zool. 297(3), 165–175.CrossRefGoogle Scholar
  54. Saura, S., Bodin, Ö., Fortin, M.J., 2014. Editor’s choice: stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51(1), 171–182.CrossRefGoogle Scholar
  55. Schmitz, O.J., Hawlena, D., Trussell, G.C, 2010. Predator control of ecosystem nutrient dynamics. Ecol. Lett. 13(10), 1199–1209.PubMedCrossRefGoogle Scholar
  56. Smeraldo, S., Di Febbraro, M., Cirovic, D., Bosso, L., Trbojevic, I., Russo, D., 2017. Species distribution models as a tool to predict range expansion after reintroduction: a case study on Eurasian beavers (Castor fiber). J. Nat. Conserv. 37(3), 12–20.CrossRefGoogle Scholar
  57. Swanepoel, L.H., Lindsey, P., Somers, M.J., Hoven, W.V., Dalerum, F., 2013. Extent and fragmentation of suitable leopard habitat in South Africa. Anim. Conserv. 16(1), 41–50.CrossRefGoogle Scholar
  58. Thuiller, W., Georges, D., Engler, R., 2014. Biomod2: Ensemble Platform for Species Distribution Modeling. R Package Version 3.1-64, Availablt at: (Accessed February 2015).Google Scholar
  59. Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 32(3), 369–373.CrossRefGoogle Scholar
  60. Tribsch, A., Schönswetter, P., 2003. Patterns of endemism and comparative phylogeography confirm palaeo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52(3), 477–497.CrossRefGoogle Scholar
  61. Vayssières, M.P., Plant, R.E., Allen-Diaz, B.H., 2000. Classification trees: an alternative non-parametric approach for predicting species distributions. J. Veg. Sci. 11(5), 679–694.CrossRefGoogle Scholar
  62. Worm, B., Duffy, J.E., 2003. Biodiversity, productivity and stability in real food webs. Trends Ecol. Evol. 18(12), 628–632.CrossRefGoogle Scholar
  63. WWF, Z., GFN, W., 2014. Living Planet Report 2014: Species and Spaces, People and Places. WWF, Gland, Switzerland.Google Scholar
  64. Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Campbell Grant, E.H., Veran, S., 2013. Presence-only modelling using MAXENT: when can we trust the inferences? Methods Ecol. Evol. 4(3), 236–243.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  • Azita Farashi
    • 1
    Email author
  • Mitra Shariati
    • 2
  • Mahshid Hosseini
    • 1
  1. 1.Department of Environmental Sciences, Faculty of Natural Resource and EnvironmentFerdowsi University of MashhadIran
  2. 2.Faculty of Geo-Information Science and Earth Observation (ITC)University of TwenteEnschedethe Netherlands

Personalised recommendations