Advertisement

Mammalian Biology

, Volume 87, Issue 1, pp 93–100 | Cite as

Genetic studies in the recently divergent Eligmodontia puerulus and E. moreni (Rodentia, Cricetidae, Sigmodontinae) from Puna and Monte deserts of South America

  • Alicia Beatriz Armella Sierra
  • Elio Rodrigo Castillo
  • Carolina Labaroni
  • Maria Eugenia Barrandeguy
  • Dardo Andrea Martí
  • Ricardo Ojeda
  • Cecilia LanzoneEmail author
Original investigation

Abstract

Eligmodontia is a genus of phyllotine rodents adapted to arid environments with seven recognized species. The sister species E. puerulus and E. moreni are distributed in the adjacent highland Puna and lowland Monte deserts respectively, and show remarkable morphological and chromosomal differences. However, analyses of the cytochrome b gene showed important variability, without reciprocal monophyly between them. In order to study the evolutionary processes involved in the diversification of both taxa, we analyzed 1161 bp of the mitochondrial control region and flanking sequences (N = 60), as well as 759 bp of the first exon of the nuclear gene IRBP (N = 14). Individuals of both species from Jujuy, Catamarca and Mendoza Provinces of Argentina were previously karyotyped. Results showed that the mitochondrial sequences present high haplotype and nucleotide diversity within all population, and no haplotype was shared between both species. FST indicated that populations of both species were moderately structured. The network was constituted by two major haplogroups, one composed by E. puerulus samples from Jujuy, and the other composed of sequences of all studied populations. The Bayesian analysis showed three clusters, matching the network. Phylogenetic analysis recovered two clades with high support, in coincidence with the network groups. There was only one close join between sequences of both species, corresponding to samples from Catamarca. Thus, mitochondrial data suggested hybridization between both species in Catamarca, with asymmetric introgression. The IRBP showed low variability and, in the phylogenetic analysis, the sequences of E. puerulus form a monophyletic group with intermediate support, whereas those of E. moreni collapse into a basal polytomy. Our data indicated a recent divergence and absence of introgression in the nuclear genomes. The results at the population level with mitochondrial sequences, together with integrative taxonomy at the species level in a biogeographic context, suggest that climatic and geologic changes could have had an important role in the determination of genetic variability patterns observed in these rodents.

Keywords

Variability Population genetics Speciation Sister species Hybridization South American rodents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, N.I., Rodchenkova, E.N., Kostygov, A.Yu., 2009. Genetic variation and phylogeography of the bank vole (Clethrionomys glareolus, Arvicolinae, Rodentia) in Russia with special reference to the introgression of the mtDNA of a closely related species, red-backed vole (Cl. rutilus). Russ. J. Genet. 45, 533–545.CrossRefGoogle Scholar
  2. Allmendinger, R.W., Jordan, T.E., Kay, S.M., Isacks, B.L., 1997. The evolution of the Altiplano-Puna plateau of the Central Andes. Annu. Rev. Earth Planet. Sci. 25, 139–174.CrossRefGoogle Scholar
  3. Baker, R.J., Bradley, R.D., 2006. Speciation in mammals and the genetic species concept. J. Mammal. 87, 643–662.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.Google Scholar
  5. Beysard, M., Heckel, G., 2014. Structure and dynamics of hybrid zones at different stages of speciation in the common vole (Microtus arvalis). Mol. Ecol. 23, 673–687.Google Scholar
  6. Braun, J.K., 1993. Systematic Relationships of the Tribe Phyllotini (Muridae: Sigmodontinae) of South American. Spec. Publ., Norman: Oklahoma Mus. Nat. Hist.Google Scholar
  7. Corander, J., Marttinen, P., Mäntyniemi, S., 2006. Bayesian identification of stock mixtures from molecular markerdata. Fish. Bull. 104, 550–558.Google Scholar
  8. Cornuet, J.M., Pudlo, P., Veyssier, J., Dehne-Garcia, A., Gautier, M., Leblois, R., Marin, J.M., Estoup, A., 2014. DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Coyne, JA, Orr, H.A., 2004. Speciation. Sinauer Associates, Inc. Pub., Sunderland, Massachusetts USA.Google Scholar
  10. Coyner, B.S., Murphy, P.J., Matocq, M.D., 2015. Hybridization and asymmetric introgression across a narrow zone of contact between Neotoma fuscipes and N. macrotis (Rodentia: Cricetidae). Biol. J. Linn. Soc. 115, 162–172.Google Scholar
  11. Díaz, G.B., Ojeda, R.A., 1999. Kidney structure of Argentine desert rodents. J. Arid Environ. 41, 453–461.CrossRefGoogle Scholar
  12. Elder, F.F., 1980. Tandem fusion, centric fusion, and chromosomal evolution in the cotton rats, genus Sigmodon. Cytogenet. Cell Genet. 26, 199–210.CrossRefGoogle Scholar
  13. Excoffier, L, Lischer, H.E.L., 2010. Arlequin suite ver3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567.CrossRefGoogle Scholar
  14. Excoffier, L, Smouse, P., Quattro, J., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.PubMedPubMedCentralGoogle Scholar
  15. Funk, D.J., Omland, K.E., 2003. Species-level paraphyly and polyphyly frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Evol. Syst. 34, 397–423.CrossRefGoogle Scholar
  16. Goloboff, P., Catalano, S., 2016. TNT, version 1.5, with a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238.CrossRefGoogle Scholar
  17. González-Ittig, R.E., Theiler, G.R., Gardenal, C.N., 2002. A contribution to the subgeneric systematics of Oligoryzomys (Rodentia, Muridae) from Argentina by means ofPCR-RFLP patterns of mitochondrial DNA. Biochem. Syst. Ecol. 30, 23–33.CrossRefGoogle Scholar
  18. Hershkovitz, P., 1962. Evolution of Neotropical Cricetine Rodents (Muridae) with special reference to the Phyllotine group. Fieldiana Zool., 46.CrossRefGoogle Scholar
  19. Jansa, S.A., Voss, R.S., 2000. Phylogenetic studies on Didelphid marsupials I. Introduction and preliminary results from nuclear IRBPgene sequences.J. Mamm. Evol. 7, 43–77.Google Scholar
  20. King, M., 1993. Species Evolution. The Role of Chromosome Change. Cambridge University Press, Cambridge, UK.Google Scholar
  21. Lanzone, C, Ojeda, R.A., Gallardo, M.H., 2007. Integrative taxonomy, systematics and distribution of the genus Eligmodontia (Rodentia, Cricetidae, Sigmodontinae) in the temperate Monte Desert of Argentina. Z. Säugetierk. 72, 299–312.Google Scholar
  22. Lanzone, C, Ojeda, A.A., Ojeda, R.A., Albanese, S., Rodríguez, D., Dacar, M.A., 2011. Integrated analyses of chromosome, molecular and morphological variability in the andean mice Eligmodontia puerulus and E. moreni (Rodentia, Cricetidae, Sigmodontinae). Mamm. Biol. 76, 555–562.CrossRefGoogle Scholar
  23. Lanzone, C, Suárez, S.N., Rodríguez, D., Ojeda, A., Albanese, S., Ojeda, R.A., 2014. Chromosomal variability and morphological notes in Graomys griseoflavus (Rodentia, Cricetidae, Sigmodontinae), from Catamarca and Mendoza provinces, Argentina. Mastozool. Neotrop. 21, 47–58.Google Scholar
  24. Lanzone, C, Cardozo, D., Sánchez, D.M., Martí, D.A., Ojeda, R.A., 2016. Chromosomal variability and evolution in the tribe Phyllotini (Rodentia, Cricetidae, Sigmodontinae). Mamm. Res. 61, 373–382.CrossRefGoogle Scholar
  25. Librado, P., Rozas, J., 2009. DnaSP v5: a software forcomprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.CrossRefGoogle Scholar
  26. Maddison, W.P., 1997. Gene trees in species trees. Syst. Biol. 46, 523–536.CrossRefGoogle Scholar
  27. Mares, M.A., Braun, J.K., Coyner, B.S., Van Den Bussche, R.A., 2008. Phylogenetic and biogeographic relationships of gerbil mice Eligmodontia (Rodentia, Cricetidae) in South America, with a description of a new specie. Zootaxa 1753, 1–33.CrossRefGoogle Scholar
  28. Martínez, J.J., González-Ittig, R.E., Theiler, G.R., Ojeda, R.A., Lanzone, C, Ojeda, A., Gardenal, C.N., 2010. Patterns of speciation intwo sibling species of Graomys (Rodentia, Cricetidae) based on mtDNA sequences.J. Zool. Syst. Evol. Res. 48, 159–166.CrossRefGoogle Scholar
  29. Melnikova, E.N., Kshnyasev, I.A., Bodrov, S.Yu., Mukhacheva, S.V., Davydova, YuA, Abramson, N.I., 2012. Sympatric area of Myodes glareolus andM. rutilus (Rodentia, Cricetidae): historic and recent hybridization. Proc. Zool. Inst. RAS 316, 307–323.Google Scholar
  30. Melo-Ferreira, J., Boursot, P., Carneiro, M., Esteves, P.J., Farelo, L., Alves, P.C., 2012. Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-tree inference and coalescent simulations. Syst. Biol. 61, 367–381.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ortiz-Jaureguizar, E., Cladera, G.A., 2006. Paleoenvironmental evolution of souther South America during Cenozoic. J. Arid. Environ. 66, 489–532.CrossRefGoogle Scholar
  32. Parada, A., Pardiñas, U.F.J., Salazar-Bravo, J., D’Elía, G., Palma, R.E., 2013. Dating an impressive Neotropical radiation: molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Mol. Phylogenet. Evol. 66, 960–968.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Parinas, U.F.J., Lessa, G., Teta, P., Salazar-Bravo, J., Câmara, E.M.V.C., 2014. A new genus of sigmodontine rodent from eastern Brazil and the origin of the tribe Phyllotini. J. Mammal. 95, 201–215.CrossRefGoogle Scholar
  34. Patton, J.L., Smith, M.F., 1994. Paraphyly, polyphyly and the nature of species boundaries in pocket gophers (Genus Thomomys). Syst. Biol. 43, 11–26.Google Scholar
  35. Patton, J.L., Pardiñas, U.F.J., DíElía, G., 2015. Mammals of South America. Rodents, vol. 2. University of Chicago Press, Chicago.Google Scholar
  36. Pearson, O., Martin, S., Bellati, J., 1987. Demography and reproduction of the silky desert mouse (Eligmodontia) in Argentina. Fieldiana 39, 433–446.Google Scholar
  37. Spotorno, A.E., Sufan-Catalan, J., Walker, L.I., 1994. Cytogenetic diversity and evolution of Andean species of Eligmodontia (Rodentia, Muridae). Z. Säugetierkd. 59, 299–308.Google Scholar
  38. Spotorno, A.E., Walker, L.I., Flores, S.V., Yevenes, M., Marín, J.C., Zuleta, C, 2001. Evolución de los filotinos (Rodentia, Muridae) en los Andes del Sur. Rev. Chil. His. Nat. 74, 151–166.Google Scholar
  39. Spotorno, A.E., Zuleta, C.R., Walker, L.I., Manriquez, G.S., Valladares, P.F., Marin, J.C., 2013. A small, new gerbil-mouse Eligmodontia (Rodentia: Cricetidae) from dunes at the coasts and deserts of north-central Chile: molecular, chromosomic, and morphological analyses. Zootaxa 3683, 377–394.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Steppan, S.J., Ramirez, O., Banbury,J., Huchon, D., Pacheco, V., Walker, L.I., Spotorno, A.E., 2007. A molecular reappraisal of the systematics of the leaf-eared mice Phyllotis and their relatives. In: Kelt, D.A., Lessa, E.P., Salazar-Bravo, J.A., Patton, J.L. (Eds.), The Quintessential Naturalist: Honoringthe Life and Legacy of Oliver P. Pearson. Univ. California Pub. Zool., USA, pp. 799-826 (134).Google Scholar
  41. Steppan, S.J., 1995. Revision of the Tribe Phyllotini (Rodentia: Sigmodontinae), with a phylogenetic hypothesis forthe Sigmodontinae. Fieldiana Zool. 80, 1–112.Google Scholar
  42. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Taylor, P.J., 2000. Patterns of chromosomal variation in southern African rodents. J. Mammal. 81, 317–331.CrossRefGoogle Scholar
  44. Theiler, G.R., Gardenal, C.N., Blanco, A., 1999. Patterns of evolution in Graomys griseoflavus (Rodentia, Muridae) IV. A case of rapid speciation. J. Evol. Biol. 12, 970–979.Google Scholar
  45. Wright, S., 1978. Evolution and the genetics of populations. Variability Within and Among Natural Populations, vol. 4. University of Chicago press, Chicago.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  • Alicia Beatriz Armella Sierra
    • 1
  • Elio Rodrigo Castillo
    • 1
  • Carolina Labaroni
    • 1
  • Maria Eugenia Barrandeguy
    • 2
  • Dardo Andrea Martí
    • 1
  • Ricardo Ojeda
    • 3
  • Cecilia Lanzone
    • 1
    Email author
  1. 1.Laboratorio de Genética EvolutivaInstituto de Biología Subtropical IBS CONICET-UNaM, FCEQyNPosadas, MisionesArgentina
  2. 2.Laboratorio de Genética de Poblaciones y del PaisajeIBS CONICET-UNaM, FCEQyNPosadas, MisionesArgentina
  3. 3.Grupo de Investigaciones de la Biodiversidad (GiB)CONICET-CCT-Mendoza-IADIZAMendozaArgentina

Personalised recommendations