Advertisement

Mammalian Biology

, Volume 87, Issue 1, pp 40–49 | Cite as

Vertical clingers and gougers: Rapid acquisition of adult limb proportions facilitates feeding behaviours in young Javan slow lorises (Nycticebus javanicus)

  • Stephanie A. PoindexterEmail author
  • K. A. I. Nekaris
Original investigation

Abstract

Animals of all ages need to access essential food resources, either on their own or with the assistance of conspecifics. Rapid physical and behavioural development is one strategy to help young animals reach adulthood. Specialized gum-feeding mammals exploit a food type that is relatively difficult to access and digest and must possess the appropriate adaptions to access large vertical substrates, i.e. tree trunks. Unlike other gum feeding mammals, the Javan slow loris (Nycticebus javanicus) lacks physical structures, such as keeled nails or claws, which animals commonly use to secure themselves to large vertical substrates. To understand how slow lorises of all ages exploit gum, we examined their vertical gouging posture, locomotor behaviour, habitat use during feeding, and their morphometric measures across three age classes (adult, sub-adult, juvenile). Using data collected in Cipaganti, Java, Indonesia between April 2012 and April 2016, we found that individuals of N. javanicus rely on their hand, foot, and limb morphology to maintain vertical gouging postures, in place of claws or keeled nails. Locomotor behaviour, position in tree, and tree DBH showed no significant difference across age classes while feeding. Juveniles were indistinguishable from adults and sub-adults in regards to limb proportion indices, lower leg length, hand span and foot span. Some morphometric measures scaled isometrically e.g. arm length, but those highlighted during prolonged vertical postures scaled allometrically e.g. leg, hand, and foot measures. These findings suggest that the rapid behavioural and physical development of key features may act as an ontogenetic adaptation to facilitate access to a stable food resource at a young age. The Javan slow loris exemplifies the complex relationship that exists between an animal’s diet and the specializations that facilitate access to these food resources.

Keyword

Exudativory Gum Ontogeny Morphometrics Strepsirrhine Substrate use Habitat use 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, J., 1974. Observational study ofbehavior: sampling methods. Behaviour 49, 227–266, http://dx.doi.org/10.1163/156853974X00534.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bezanson, M., 2009. Life history and locomotion in Cebus capucinus and Alouatta palliata. Am. J. Phys. Anthropol. 140, 508–517, http://dx.doi.org/10.1002/ajpa.21099.PubMedCrossRefGoogle Scholar
  3. Booth, A.N., Henderson, A.P., 1963. Physiologic effects of three microbial polysaccharides on rats. Toxicol. Appl. Pharmacol. 5, 478–484, http://dx.doi.org/10.1016/0041-008X(63)90019-X.PubMedCrossRefGoogle Scholar
  4. Burrows, A.M., Hartstone-Rose, A., Nash, L.T., 2015. Exudativory in the Asian loris, Nycticebus: Evolutionary divergence in the toothcomb and M3. Am. J. Phys. Anthropol. 158, 663–672, http://dx.doi.org/10.1002/ajpa.22829.PubMedCrossRefGoogle Scholar
  5. Cabana, F., Dierenfeld, E., Donati, G., Nekaris, K.A.I., 2017a. Exploiting a readily available but hard to digest resource: a review of exudativorous mammals identified thus far and how they cope in captivity. J. Integr. Zool.Google Scholar
  6. Cabana, F., Dierenfeld, E., Wirdateti, W., Donati, G., Nekaris, K.A.I., 2017b. The seasonal feeding ecology of the Javan slow loris (Nycticebus javanicus). Am. J. Phys. Anthropol. 162, 768–781, http://dx.doi.org/10.1002/ajpa.23168.PubMedCrossRefGoogle Scholar
  7. Cartmill, M., 1979. The volar skin of primates: its frictional characteristics and their functional significance. Am. J. Phys. Anthropol. 50, 497–509, http://dx.doi.org/10.1002/ajpa.1330500402.PubMedCrossRefGoogle Scholar
  8. Case, T.J., 1978. On the evolution and adaptive significance of postnatal growth rates interrestrial vertebrates. Q. Rev. Biol. 53, 243–282, http://dx.doi.org/10.1086/410622.PubMedCrossRefGoogle Scholar
  9. Charles-Dominique, P., 1977. Ecology and Behaviour of Nocturnal Prosimians. Duckworth, London.Google Scholar
  10. Chivers, D.J., Hladik, C.M., 1980. Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relationtodiet.J. Morphol. 166, 337–386, http://dx.doi.org/10.1002/jmor.1051660306.CrossRefGoogle Scholar
  11. Das, N., Nekaris, K.A.I., Bhattacharjee, P., 2014. Medicinal plant exudativory by the Bengal slow loris Nycticebus bengalensis. Endanger Species Res. 23, 149–157, http://dx.doi.org/10.3354/esr00560.CrossRefGoogle Scholar
  12. De Muizon, C., Lange-Badré, B., 1997. Carnivorous dental adaptations in tribosphenic mammals and phylogenetic reconstruction. Lethaia 30, 353–366, http://dx.doi.org/10.1111/j.1502-3931.1997.tb00481.x.CrossRefGoogle Scholar
  13. Dierenfeld, E.S., Hintz, H.F., Robertson, J.B., Van Soest, P.J., Oftedal, O.T., 1982. Utilization of bamboo by thegiant panda. J. Nutr. 112, 636–641.PubMedCrossRefGoogle Scholar
  14. Dixson, A., Fleming, D., 1981. Parental behaviour and infant development in owl monkeys (Aotus trivirgatus griseimembra). J. Zool. 194, 25–39, http://dx.doi.org/10.1111/j.1469-7998.1981.tb04576.x.CrossRefGoogle Scholar
  15. Doran, D.M., 1992. The ontogeny ofchimpanzee and pygmy chimpanzee locomotor behavior: a case study of paedomorphism and its behavioral correlates. J. Hum. Evol. 23, 139–157, http://dx.doi.org/10.1016/0047-2484(92)90104-H.CrossRefGoogle Scholar
  16. Doran, D.M., 1997. Ontogeny of locomotion in mountaingorillas and chimpanzees. J. Hum. Evol. 32, 323–344, http://dx.doi.org/10.1006/jhev.1996.0095.PubMedCrossRefGoogle Scholar
  17. Dunham, N.T., 2015. Ontogeny of positional behavior and support use among Colobus angolensis palliatus of the Diani Forest, Kenya. Primates 56, 183–192, http://dx.doi.org/10.1007/s10329-015-0457-3.PubMedCrossRefGoogle Scholar
  18. Dytham, C., 2011. Choosing and UsingStatistics: A Biologist’s Guide.John Wiley & Sons, West Sussex, pp. 251-254.Google Scholar
  19. Ehrlich, A., Macbride, L., 1989. Mother-infant interactions in captive slow lorises (Nycticebus coucang). Am. J. Primatol. 19, 217–228, http://dx.doi.org/10.1002/ajp.1350190404.CrossRefGoogle Scholar
  20. Ercoli, M.D., Youlatos, D., 2016. Integrating locomotion, postures and morphology: the case of the tayra, Eira barbara (Carnivora, Mustelidae). Mamm. Biol. 81, 464–476, http://dx.doi.org/10.1016/j.mambio.2016.06.002.CrossRefGoogle Scholar
  21. Field, A., 2013. Discovering Statistics Using SPSS, fourth ed. Sage, London.Google Scholar
  22. Fitch-Snyder, H., Ehrlich, A., 2003. Mother-infant interactions in slow lorises (Nycticebus bengalensis) and pygmy lorises (Nycticebus pygmaeus). Folia Primatol. 74, 259–271, http://dx.doi.org/10.1159/000073313.PubMedCrossRefGoogle Scholar
  23. Fleagle, J.G., Mittermeier, R.A., 1980. Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. Am. J. Phys. Anthropol. 52, 301–314, http://dx.doi.org/10.1002/ajpa.1330520302.CrossRefGoogle Scholar
  24. Fleagle, J.G., 2013. Primate Adaptation and Evolution, third ed. Academic Press, San Diego.Google Scholar
  25. Gebo, D.L., 1985. The nature of the primate grasping foot. Am. J. Phys. Anthropol. 67, 269–278.CrossRefGoogle Scholar
  26. Gebo, D.L., 2011. Vertical clinging and leaping revisited: vertical support use as the ancestral condition of strepsirrhine primates. Am. J. Phys. Anthropol. 146, 323–335, http://dx.doi.org/10.1002/ajpa.21595.PubMedCrossRefGoogle Scholar
  27. Godfrey, L.R., Samonds, K.E., Jungers, W.L., Sutherland, M.R., 2001. Teeth, brains, and primate life histories. Am. J. Phys. Anthropol. 114, 192–214,  https://doi.org/10.1002/1096-8644(200103)114:3<192:AID-AJPA1020>3.0.CO;2-Q.PubMedCrossRefGoogle Scholar
  28. Hill, W.C.O., 1937. On the breeding and rearing of certain species of primates in captivity. Ceylon J. Sci. B. Zool. 20, 369–389.Google Scholar
  29. Ishida, H., Hirasaki, E., Matano, S., 1992. Locomotion of the slow loris between discontinuous substrates. In: Matano, S., Tuttle, R.H., Ishida, H., Goodman, M. (Eds.), Topics in Primatology, Vol. 3. Evolutionary Biology Reproductive Endocrinology, and Virology, University of Tokyo Press, Tokyo, Japan, pp. 139-152.Google Scholar
  30. Hurov, J.R., 1991. Rethinking primate locomotion: what can we learn from development. J. Motor. Behav. 23, 211–218, http://dx.doi.org/10.1080/00222895.1991.10118364.CrossRefGoogle Scholar
  31. Irlbeck, N.A., Hume, I.D., 2003. The role of acacia in the diets of Australian marsupials-a review. Aust. Mammal. 25, 121–134.CrossRefGoogle Scholar
  32. Izard, M.K., Weisenseel, K.A., Ange, R.L., 1988. Reproduction in the slow loris (Nycticebus coucang). Am. J. Primatol. 16, 331–339, http://dx.doi.org/10.1002/ajp.1350160405.CrossRefGoogle Scholar
  33. Johnson, L.E., Hanna, J., Schmitt, D., 2015. Single-limb force data fortwo lemur species while vertically clinging. Am. J. Phys. Anthropol. 158, 463–474, http://dx.doi.org/10.1002/ajpa.22803.PubMedCrossRefGoogle Scholar
  34. Jungers, W.L., Fleagle, J.G., 1980. Postnatal growth allometry of the extremities in Cebus albifrons and Cebus apella: a longitudinal and comparative study. Am. J. Phys. Anthropol. 53, 471–478, http://dx.doi.org/10.1002/ajpa.1330530403.PubMedCrossRefGoogle Scholar
  35. Kingston, A.K., Boyer, D.M., Patel, B.A., Larson, S.G., Stern, J.T., 2010. Hallucal grasping in Nycticebus coucang: further implications for the functional significance of a large peroneal process. J. Hum. Evol. 58, 33–42, http://dx.doi.org/10.1016/j.jhevol.2009.08.002.PubMedCrossRefGoogle Scholar
  36. Koyabu, D.B., Oshida, T., Dang, N.X., Can, D.N., Kimura, J., Sasaki, M., Motokawa, M., Son, N.T., Hayashida, A., Shintaku, Y., Endo, H., 2009. Craniodental mechanics and the feeding ecology of two sympatric callosciurine squirrels in Vietnam. J. Zool. 279, 372–380, http://dx.doi.org/10.1111/j.1469-7998.2009.00629.x.CrossRefGoogle Scholar
  37. Kubota, K., Iwamoto, M., 1966. Comparative anatomical and neurohistological observations on the tongue of slow loris (Nycticebus coucang). Anat. Rec. 158, 163–176, http://dx.doi.org/10.1002/ar.1091580206.CrossRefGoogle Scholar
  38. Lammers, A.R., German, R.Z., 2002. Ontogenetic allometry in the locomotor skeleton of specialized half-bounding mammals. J. Zool. 258, 485–495, http://dx.doi.org/10.1017/S0952836902001644.CrossRefGoogle Scholar
  39. Lawler, R.R., 2006. Sifaka positional behavior: ontogenetic and quantitative genetic approaches. Am. J. Phys. Anthropol. 131, 261–271, http://dx.doi.org/10.1002/ajpa.20430.PubMedCrossRefGoogle Scholar
  40. Leigh, S.R., 1994. Ontogenetic correlates of diet in anthropoid primates. Am. J. Phys. Anthropol. 94, 499–522, http://dx.doi.org/10.1002/ajpa.1330940406.PubMedCrossRefGoogle Scholar
  41. Leigh, S.R., 2004. Brain growth, life history, and cognition in primate and human evolution. Am.J. Primatol. 62, 139–164, http://dx.doi.org/10.1002/ajp.20012.PubMedCrossRefGoogle Scholar
  42. Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., Gordon, J.I., 2008. Evolution of mammals and their gut microbes. Science 320, 1647–1651, http://dx.doi.org/10.1126/science.1155725.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Martin, R.D., 1975. The bearing of reproductive behaviour and ontogeny on strepsirhine phylogeny. In: Luckett, W.P., Szalay, F.S. (Eds.), Phylogeny of the Primates. Springer, US, pp. 265-297, http://dx.doi.org/10.1007/978-1-4684-2166-8.12.Google Scholar
  44. Monke, J.V., 1941. Non-availability of gum arable as aglycogenic foodstuff in the rat. Proc. Soc. Exp. Biol. Med. 46, 178–179.CrossRefGoogle Scholar
  45. Naples, V.L., 1999. Morphology, evolution and function of feeding in the giant anteater (Myrmecophaga tridactyla).J. Zool. 249, 19–41, http://dx.doi.org/10.1111/j.1469-7998.1999.tb01057.x.CrossRefGoogle Scholar
  46. Nash, L.T., 1986. Dietary, behavioural, and morphological aspects of gummivory in primates. Yearb. Phys. Anthropol. 29, 113–137, http://dx.doi.org/10.1002/ajpa.1330290505.CrossRefGoogle Scholar
  47. Nekaris, K.A.I., Jaffe, S., 2007. Unexpected diversity of slow lorises (Nycticebus spp.) within the Javan pet trade: implications for slow loris taxonomy. Contrib. Zool. 76, 187–196.CrossRefGoogle Scholar
  48. Nekaris, K.A.I., Starr, C.R., Collins, R.L., Wilson, A., 2010. Comparative ecology of exudate feeding by lorises (Nycticebus, Loris) and pottos (Perodicticus, Arctocebus). In: Burrows, A.M., Nash, L.T. (Eds.), The Evolution of Exudativory in Primates. Springer, New York, pp. 155-168, http://dx.doi.org/10.1007/978-1-4419-6661-2.8.CrossRefGoogle Scholar
  49. Nekaris, K., 2001. Activity budget and positional behaviour of the Mysore slender loris (Loris tardigradus lydekkerianus): implications for slow climbing locomotion. Folia Primatol. 72, 228–241, http://dx.doi.org/10.1159/000049942.PubMedCrossRefGoogle Scholar
  50. Nekaris, K.A.I., 2014. Extreme primates: ecology and evolution of Asian lorises. Evol. Anthropol. 23, 177–187, http://dx.doi.org/10.1002/evan.21425.PubMedCrossRefGoogle Scholar
  51. Pereira, M.E., Klepper, A., Simons, E.L., 1987. Tactics of care foryoung infants by forest-living ruffed lemurs (Varecia variegata variegata): Ground nests, parking, and biparental guarding. Am.J. Primatol. 13, 129–144, http://dx.doi.org/10.1002/ajp.1350130204.CrossRefGoogle Scholar
  52. Petter, J.J., 1978. Ecological and physiological adaptations of five sympatric nocturnal lemurs to seasonal variations in food production. Recent Adv. Primatol. 1, 211–223.Google Scholar
  53. Pereira, M.E., Leigh, S.R., 2003. Modes of primate development. In: Kappeler, P.M., Pereira, M.E. (Eds.), Primate Life Histories and Socioecology. University of Chicago Press, Chicago, pp. 149-176.Google Scholar
  54. Pournelle, G.H., 1955. The bashful clown. Zoonooz 28, 23–25.Google Scholar
  55. Power, M.L., Myers, E.W., 2009. Digestion in the common marmoset (Callithrix jacchus), agummivore-frugivore. Am.J. Primatol. 71, 957–963, http://dx.doi.org/10.1002/ajp.20737.PubMedCrossRefGoogle Scholar
  56. Preuschoft, H., Günther, M., Christian, A., 1998. Size dependence in prosimian locomotion and its implications for the distribution of body mass. Folia Primatol. 69, 60–81, http://dx.doi.org/10.1159/000052699.PubMedCrossRefGoogle Scholar
  57. Rasmussen, D.T., 1986. Life history and behavior of slow loris and slender loris: implications/orthe Lorisine Galagine divergence. In: Unpublished Ph.D. Thesis. Duke University, Durham.Google Scholar
  58. Ravosa, M.J., Daniel, A.N., Costley, D.B., 2010. Allometry and evolution in the galago skull. Folia Primatol. 81, 177–196, http://dx.doi.org/10.1159/000317737.PubMedCrossRefGoogle Scholar
  59. Roberts, M., 1994. Growth, development, and parental care in the western tarsier (Tarsius bancanus) in captivity: evidence for a slow life-history and nonmonogamous mating system. Int. J. Primatol. 15, 1–28, http://dx.doi.org/10.1007/BF02735232.CrossRefGoogle Scholar
  60. Rode-Margono, E.J., Nijman, V., Wirdateti, N.K., 2014. Ethology of the critically endangered Javan slow loris Nycticebus javanicus E Geoffroy Saint-Hilaire in West Java. Asian Primates 4, 27–41.Google Scholar
  61. Schuppli, C., Forss, S.I., Meulman, E.J., Zweifel, N., Lee, K.C., Rukmana, E., Vogel, E.R., van Noordwijk, M.A., van Schaik, C.P., 2016. Development of foraging skills in twoorangutan populations: needingto learnor needingtogrow? Front. Zool. 13, 43, http://dx.doi.org/10.1186/s12983-016-0178-5.Google Scholar
  62. Sellers, W.I., 1996. A biomechanical invest igation into the absence of leaping in the locomotor repertoire of the slender loris (Loris tardigradus). Folia Primatol. 67, 1–14, http://dx.doi.org/10.1159/000157202.PubMedCrossRefGoogle Scholar
  63. Smith, B.H., Crummett, T.L., Brandt, K.L., 1994. Ages of eruptionof primate teeth: a compendium foraging individuals and comparing life histories. Am. J. Phys. Anthropol. 37, 177–231, http://dx.doi.org/10.1002/ajpa.1330370608.CrossRefGoogle Scholar
  64. Smith, A.P., 1982. Diet and feeding strategies of the marsupial sugarglider in temperate Australia.J. Anim. Ecol. 51, 149–166, http://dx.doi.org/10.2307/4316.CrossRefGoogle Scholar
  65. Smith, A.C., 2010. Exudativory in Primates: Interspecific Patterns. In: The Evolution of Exudativory in Primates. Springer, New York, pp. 45-87.Google Scholar
  66. Streicher, U., Wilson, A., Collins, R.L., Nekaris, K.A.I., 2012. Exudates and animal prey characterize slow loris (Nycticebus pygmaeus, N. coucang and N. javanicus) diet in captivity and after release into the wild. In: Masters, J., Marco Gamba, M., Génin, F. (Eds.), Leaping Ahead. Springer, New York, pp. 165-172.CrossRefGoogle Scholar
  67. Swapna, N., Radhakrishna, S., Gupta, A.K., Kumar, A., 2010. Exudativory in the Bengal slow loris (Nycticebus bengalensis) inTrishna Wildlife Sanctuary, Tripura, northeast India. Am.J. Primatol. 72, 113–121.PubMedGoogle Scholar
  68. Tan, C.L., 1999. Group composition, home range size, and diet of three sympatric bamboo lemur species (genus Hapalemur) in Ranomafana National Park. Madagascar. Int. J. Primatol. 20, 547–566, http://dx.doi.org/10.1023/A:1020390723639.CrossRefGoogle Scholar
  69. Veselousky, Z., 1966. A contribution to the knowledge of the reproduction and growth of the two-toed sloth Choloepus didactylus at prague zoo. Int. Zoo Yearb. 6, 147–153, http://dx.doi.org/10.1111/j.1748-1090.1966.tb01732.x.CrossRefGoogle Scholar
  70. Viguier, B., 2004. Functional adaptations in the craniofacial morphology of Malagasy primates: shape variations associated with gummivory in the family Cheirogaleidae. Ann. Anat. 186, 495–501, http://dx.doi.org/10.1016/S0940-9602(04)80093-1.PubMedCrossRefGoogle Scholar
  71. Wells, J.P., Turnquist, J.E., 2001. Ontogeny of locomotion in rhesus macaques (Macaca mulatta): II. Postural and locomotor behavior and habitat use in a free-ranging colony. Am.J. Phys. Anthropol. 115, 80–94, http://dx.doi.org/10.1002/ajpa.1059.Google Scholar
  72. Wiens, F., Zitzmann, A., 2003. Social dependence of infant slow lorises to learn diet. Int. J. Primatol. 24, 1007–1021, http://dx.doi.org/10.1023/A:1026272127727.CrossRefGoogle Scholar
  73. Williams, G.C., 1966. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought. Princeton University Press, NJ.Google Scholar
  74. Workman, C., Covert, H.H., 2005. Learning the ropes: The ontogeny of locomotion in red-shanked douc (Pygathrix nemaeus), Delacour’s (Trachypithecus delacouri), and Hatinh langurs (Trachypithecus hatinhensis) I. positional behavior. Am. J. Phys. Anthropol. 128, 371–380, http://dx.doi.org/10.1002/ajpa.20205.PubMedCrossRefGoogle Scholar
  75. Young, J.W., 2009. Ontogeny of joint mechanics in squirrel monkeys (Saimiri boliviensis): functional implications for mammalian limb growth and locomotor development. J. Exp. Biol. 212, 576–1591, http://dx.doi.org/10.1242/jeb.025460.CrossRefGoogle Scholar
  76. Young, J.W., Heard-Booth, A.N., 2016. Grasping primate development: Ontogeny of intrinsic hand and foot proportions in capuchin monkeys (Cebus albifrons and Sapajus apella). Am.J. Phys. Anthropol. 161, 104–115, http://dx.doi.org/10.1002/ajpa.23013.PubMedCrossRefGoogle Scholar
  77. Zhu, W.W., Garber, P.A., Bezanson, M., Qi, X.G., Li, B.G., 2015. Age-and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (Rhinopithecus roxellana). Am.J. Primatol. 77, 98–108, http://dx.doi.org/10.1002/ajp.22314.PubMedCrossRefGoogle Scholar
  78. Zimmermann, E., 1989. Reproduction, physical growth and behavioral development in slow loris (Nycticebus coucang, Lorisidae). Hum. Evol. 4, 171–179, http://dx.doi.org/10.1007/BF02435445.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  1. 1.Nocturnal Primate Research GroupOxford Brookes UniversityOxfordUK

Personalised recommendations