Advertisement

Mammalian Biology

, Volume 84, Issue 1, pp 35–43 | Cite as

Phylogeography of European moose (Alces alces) based on contemporary mtDNA data and archaeological records

  • Magdalena NiedziałkowskaEmail author
Review Article

Abstract

Phylogeography can help to determine LGM refugia and postglacial migration routes. However, the locations of LGM refugial areas in eastern Europe are not clear. Moose (Alces alces) is presently a common species in central and north-eastern Europe, but there are no studies showing its phylogenetic pattern and genetic diversity across its whole continuous range. Moose never became extinct in the eastern part of its range, and the eastern mtDNA lineage has the largest effective population size. The present study shows the phylogeographic pattern and genetic diversity of European moose and compares the results of mtDNA analyses with the archaeological record of the species to identify its LGM refugia and postglacial migration routes. I combined the mtDNA control region sequences obtained in all studies of moose in Europe and western Asia. The genetic data were then compared with the archaeological records of the species dated to the LGM. I found that the European moose lineage inhabits Europe and western Asia. It is composed of two clades: the eastern and the central-western, consisting of a total of six discrete haplogroups. The most complex, the eastern clade, has the largest range. Some of the haplogroups have narrow or scattered distributions and two are common in almost the whole range. Genetic diversity hotspots were detected in contact zones of different mtDNA haplogroups rather than in the LGM refugial areas of moose. Archaeological records dated to the LGM were found in several localities in central, southern and eastern Europe as well as in western Asia. The range of the moose during the LGM was much larger than previously thought. The eastern clade survived the LGM in western Siberia, the Ural Mountains and Russian plain. LGM refugia of moose were also located in the Caucasus, Carpathians, Balkans and northern Italy.

Keywords

Control region of mtDNA Genetic diversity Last Glacial Maximum LGM refugia Postglacial recolonization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol 16, 37–48.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bradley, D.G., MacHugh, D.E., Cunningham, P., Loftus, R.T., 1996. Mitochondrial diversity and the origins of African and European cattle. PNAS 93, 5131–5135.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Burzynska, B., Olech, W., Topczewski, J., 1999. Phylogeny andgenetic variationof the European bison Bison bonasus based on mitochondrial DNA D-loop sequences. Acta Theriol 44, 253–262.CrossRefGoogle Scholar
  4. Charlier, J., Laikre, L., Ryman, N., 2008. Genetic structure and evidence of a local bottleneck in moose in Sweden.J. Wildl. Manag 72, 411–415.CrossRefGoogle Scholar
  5. Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710–714.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cohen, K.M., Finney, S., Gibbard, P.L., 2015. International Chronostratigraphic Chart, International Commission on Stratigraphy.Google Scholar
  7. Deffontaine, V.L.R., Kotlik, P., Sommer, R., Nieberding, C., Paradis, E., Searle, J.B., Michaux, J.R., 2005. Beyond the Mediterranean peninsulas: evidence for central European glacial refugia for a temperate mammal species, the bank vole (Clethrionomys glareolus). Mol. Ecol 14, 1727–1739.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with Beauti and the Beast 1.7. Mol. Biol. Evol 29, 1969–1973.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dzięciołowski, R., Pielowski, Z., 1993. Łos. Wydawnictwo ANTON-5 Sp. z o.o., Warszawa, Poland (in Polish).Google Scholar
  10. Filonov, K.P., 1983. Los. Lesnaya Promyshlennost, Moscow, Russia (in Russian).Google Scholar
  11. Haanes, H., Roed, K.H., Solberg, E.J., Herfindal, I., Saether, B.E., 2011. Genetic discontinuities in a continuously distributed and highly mobile ungulate the Norwegian moose. Conserv. Genet 12, 1131–1143.CrossRefGoogle Scholar
  12. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 41, 95–98.Google Scholar
  13. Hassanin, A., Delsuc, F., Ropiquet, A., Hammer, C., van Vuuren, B.J., Matthee, C., Ruiz-Garcia, M., Catzeflis, F., Areskoug, V., Trung Thanh, N., Couloux, A., 2012. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol 335, 32–50.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Hewitt, M.H., 1996. Some genetic consequences of ice ages, and their role, in divergence and speciation. Biol. J. Linn. Soc 58, 247–276.CrossRefGoogle Scholar
  15. Hewitt, G., 2000. The genetic legacy of the quaternary ice ages. Nature 405, 907–913.CrossRefGoogle Scholar
  16. Hofreiter, M., Serre, D., Rohland, N., Rabeder, G., Nagel, D., Conard, N., Munzel, S., Paabo, S., 2004. Lack of phylogeography in European mammals before the last glaciation. PNAS 101, 12963–12968.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Homolka, M., 1998. Moose (Alces alces) in the Czech Republic: chances forsurvival in the man-made landscape. Folia Zool., 2.Google Scholar
  18. Hundertmark, K.J., Shields, G.F., Udina, I.G., Bowyer, R.T., Danilkin, A.A., Schwartz, C.C., 2002. Mitochondrial phylogeography of moose (Alces alces): Late Pleistocene divergence and population expansion. Mol. Phylogenet. Evol 22, 375–387.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Kangas, V.M., Kvist, L., Kholodova, M., Nygrén, T., Danilov, P., Panchenko, D., Fraimout, A., Aspi, J., 2015. Evidence of post-glacial secondary contact and subsequent anthropogenic influence on the genetic composition of Fennoscandian moose (Alces alces). J. Biogeogr 42, 2197–2208.CrossRefGoogle Scholar
  20. Kholodova, M.V., Davydov, A.V., Meschersky, I.G., Piskunov, O.D., Rozhkov, Y.I., 2005. Study of molecular-genetic diversity of moose (Alces alces) from central and north-western regions of Russia: analyses of the mtDNA. Vestnik Ohotovedenia [in Russian].Google Scholar
  21. Kholodova, M.V., Korytin, N.S., Bolshakov, V.N., 2014. The role of the Urals in the genetic diversity of the European moose subspecies (Alces alces alces). Biol. Bull 41, 522–528.CrossRefGoogle Scholar
  22. Kolesnikov, V.V., Kozlovskii, I.S., 2014. Geographical variation of antler morphology of moose (Alces alces) in Russia. Acta Theriol 59, 443–448.CrossRefGoogle Scholar
  23. Kosintsev, P., 2007. Late Pleistocene large mammal faunas from the Urals. Quat. Int 160, 112–120.CrossRefGoogle Scholar
  24. Kotlik, P., Deffontaine, V., Mascheretti, S., Zima, J., Michaux, J.R., Searle, J.B., 2006. A northern glacial refugium for bank voles (Clethrionomys glareolus). PNAS 103, 14860–14864.PubMedCrossRefGoogle Scholar
  25. Kowalski, M., Misiak, J., Reklewski, J., 2003. Mammals species introduced to the Kampinos Park. Kampinoski Park Narodowy 1, 675–684 (in Polish with English summary).Google Scholar
  26. Levins, R., 1968. Evolution in Changing Environments. Princeton University Press, Princeton, NJ.Google Scholar
  27. Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G.K.C., Henriksen, M., Hjort, C., Krinner, G., Lunkka, J.P., Moller, P., Murray, A., Nikolskaya, O., Saarnisto, M., Svendsen, J.I., 2004. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the last glaciation. Quat. Sci. Rev 23, 1313–1332.CrossRefGoogle Scholar
  28. Markova, A.K., Simakova, A.N., 1998. Distribution of late Valday mammals and plants on the northern Russian Plain. Polar Geogr 22, 155–169.CrossRefGoogle Scholar
  29. Markova, A.K., Smirnov, N.G., Kozharinov, A.V., Kazantseva, N.E., Simakova, A.N., Kitaev, L.M., 1995. Late Pleistocene distribution and diversity of mammals in Northern Eurasia (Paleofauna database). Paleontol. Evol., 5–143.Google Scholar
  30. Markova, A.K., Simakova, A.N., Puzachenko, A.Y., 2009. Ecosystems of Eastern Europe at the time of maximum cooling of the Valdai glaciation (24-18 kyr BP) inferred from data on plant communities and mammal assemblages. Quat. Int 201, 53–59.CrossRefGoogle Scholar
  31. McDevitt, A.D., Zub, K., Kawałko, A., Oliver, M.K., Herman, J.S., Wójcik, J.M., 2012. Climate and refugial origin influence the mitochondrial lineage distribution of weasels (Mustela nivalis) in a phylogeographic suture zone. Biol. J. Linn. Soc 106, 57–69.CrossRefGoogle Scholar
  32. Meiri, M., Lister, A.M., Higham, T.F.G., Stewart, J.R., Straus, L.G., Obermaier, H., Morales, M.R.G., Marin-Arroyo, A.B., Barnes, I., 2013. Late-glacial recolonization and phylogeography of European red deer (Cervus elaphus L.). Mol. Ecol 22, 4711–4722.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Moskvitina, N.S., Nemoikina, O.V., Tyuten’kov, O.Y., Kholodova, M.V., 2011. Retrospective evaluation and modern state of the moose (Alces alces L.) population in West Siberia: ecological and molecular-genetic aspects. Contemp. Probl. Ecol 4, 444–448.CrossRefGoogle Scholar
  34. Musil, R., 1985. Palaeobiostratigraphy of terrestrial communities in Europe during the Last Glacial. Sborník Národního Muzea v Praze 41 (B), 1–84.Google Scholar
  35. Nadachowski, A., Marciszak, A., Ridush, B., Stefaniak, K., Wilczynski, J., Wojtal, P., 2015. Eksploatacja zasobów fauny przez paleolityczne społecznosći łowiecko-zbierackie na przykładzie strefy pery i meta karpackiej. In: Łanczont, M., Madeyska, T. (Eds.), Paleolityczna ekumena strefy pery- i meta karpackiej. UMCS, Lublin, Poland, pp. 837–909 (in Polish and in Ukrainian).Google Scholar
  36. Nemoikina, O.V., Kholodova, M.V., Tyutenkov, O.Y., Moskvitina, N.S., 2016. Mitotypical peculiarities of the population of moose Alces alces of southeastern West Siberia. Biol. Bull 43, 335–343.CrossRefGoogle Scholar
  37. Niedziałkowska, M., Hundertmark, K.J., Jedrzejewska, B., Niedziałkowski, K., Sidorovich, V.E., Górny, M., Veeroja, R., Solberg, E.J., Laaksonen, S., Sand, H., Solovyev, V.A., Shkvyria, M., Tiainen, J., Okhlopkov, I.M., Juskaitis, R., Done, G., Borodulin, V.A., Tulandin, E.A., Jedrzejewski, W., 2014. Spatial structure in European moose (Alces alces): genetic data reveal a complex population history.J. Biogeogr 41, 2173–2184.CrossRefGoogle Scholar
  38. Niedziałkowska, M., Hundertmark, K.J., Jędrzejewska, B., Sidorovich, V.E., Zalewska, H., Veeroja, R., Solberg, E.J., Laaksonen, S., Sand, H., Solovyev, V.A., Sagaydak, A., Tiainen, J., Juskaitis, R., Done, G., Borodulin, V.A., Tulandin, E.A., Niedziałkowski, K., 2016a. The contemporary genetic pattern of European moose is shaped by postglacial recolonization, bottlenecks, and the geographical barrier of the Baltic Sea. Biol. J. Linn. Soc. 117, 879–894.CrossRefGoogle Scholar
  39. Niedziałkowska, M., Jędrzejewska, B., Danyłow, J., Niedziałkowski, K., 2016b. Diverse rates of gene flow and long-distance migration in two moose Alces alces subpopulations in Europe. Mamm. Res. 61, 171–178.CrossRefGoogle Scholar
  40. Posada, D., Crandall, K.A., 2001. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol 16, 37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Purdue, J.R., Oleksyk, T.K., Smith, M.H., 2006. Independent occurrences of multiple repeats in the control regionof mitochondrial DNAofwhite-tailed deer.J. Hered 97, 235–243.CrossRefGoogle Scholar
  42. Rambaut, A., Drummond, A.J., 2007. Tracer v1.4, Available from https://doi.org/beast.bio.ed.ac.uk/Tracer.Google Scholar
  43. Rambaut, A., 2007. FigTree v.1.4.2, Available from https://doi.org/tree.bio.ed.ac.uk/software/figtree/.Google Scholar
  44. Rozhkov, Y.I., Pronyaev, A.V., Davydov, A.V., Kholodova, M.V., Sipko, T.P., 2009. Los: populacionnayabiologiya i mikroevolyuciya. KMKScientific Press, Moscow, Russia (in Russian with English summary).Google Scholar
  45. Schönfeld, F., 2009. Presence of moose (Alces alces) in Southeastern Germany. Eur. J. Wildl. Res 55, 449–453.CrossRefGoogle Scholar
  46. Schmölcke, U., Zachos, F.E., 2005. Holocene distribution and extinction of the moose (Alces alces, Cervidae) in Central Europe. Mamm. Biol 70, 329–344.CrossRefGoogle Scholar
  47. Simakova, A.N., 2006. The vegetation of the Russian Plain during the second part of the Late Pleistocene (33-18 ka). Quat. Int 149, 110–114.CrossRefGoogle Scholar
  48. Singh, N.J., Borger, L., Dettki, H., Bunnefeld, N., Ericsson, G., 2012. From migration to nomadism: movement variability in a northern ungulate across its latitudinal range. Ecol. Appl 22, 2007–2020.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Skog, A., Zachos, F.E., Rueness, E.K., Feulner, P.G.D., Mysterud, A., Langvatn, R., Lorenzini, R., Hmwe, S.S., Lehoczky, I., Hartl, G.B., Stenseth, N.C., Jakobsen, K.S., 2009. Phylogeography of red deer (Cervus elaphus) in Europe. J. Biogeogr. 36, 66–77.CrossRefGoogle Scholar
  50. Sommer, R.S., Nadachowski, A., 2006. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev 36, 251–265.CrossRefGoogle Scholar
  51. Sommer, R.S., Fahlke, J.M., Schmoelcke, U., Benecke, N., Zachos, F.E., 2009. Quaternary history of the European roe deer Capreolus capreolus. Mamm. Rev 39, 1–16.CrossRefGoogle Scholar
  52. Stefaniak, K., 2015. Neogene and Quaternary Cervidae from Poland. Habilitation Thesis. Institute of Systematics and Evolution of Animals Polish Academy of Sciences, Kraków, Poland.Google Scholar
  53. Stewart, J.R., Lister, A.M., 2001. Cryptic northern refugia and the origins of the modern biota. Trends Ecol. Evol 16, 608–613.CrossRefGoogle Scholar
  54. Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W., Ingólfsson Ó, Jakobsson, M., Kjær, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M.J., Spielhagen, R.F., Stein, R., 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 1229–1271.CrossRefGoogle Scholar
  55. Świsłocka, M., Ratkiewicz, M., Borkowska, A., Komenda, E., Raczynski, J., 2008. Mitochondrial DNA diversity in the moose, Alces alces, from northeastern Poland: evidence for admixture in a bottlenecked relic population in the Biebrza valley. Ann. Zool. Fenn 45, 360–365.CrossRefGoogle Scholar
  56. Świsłocka, M., Czajkowska, M., Duda, N., Danyłow, J., Owadowska-Cornil, E., Ratkiewicz, M., 2013. Complex patterns of population genetic structure of moose, Alces alces, after recent spatial expansion in Poland revealed by sex-linked markers. Acta Theriol 58, 367–378.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Świsłocka, M., Czajkowska, M., Duda, N., Ratkiewicz, M., 2015. Admixture promotes genetic variation in bottlenecked moose populations in eastern Poland. Mamm. Res 60, 169–179.CrossRefGoogle Scholar
  58. Taberlet, P., Fumagalli, L., Wust-Saucy, A.G., Cosson, J.F., 1998. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol 7, 453–464.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol 30, 2725–2729.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Tarnowska, E., Niedziałkowska, M., Gerc, J., Korbut, Z., Górny, M., Jedrzejewska, B., 2016. Spatial distribution of the Carpathian and Eastern mtDNA lineages of the bank vole in their contact zone relates toenvironmental conditions. Biol. J. Linn. Soc,  https://doi.org/10.1111/bij.12764.Google Scholar
  61. Wójcik, J.M., Kawałko, A., Markova, S., Searle, J.B., Kotlik, P., 2010. Phylogeographic signatures of northward postglacial colonization from high-latitude refugia: a case study of bank voles using museum specimens.J. Zool 281, 249–262.Google Scholar
  62. Wennerström, L., Ryman, N., Tison, J.L., Hasslow, A., Dalen, L., Laikre, L., 2016. Genetic landscape with sharp discontinuities shaped by complex demographic history in moose (Alces alces). J. Mammal 97, 1–13.CrossRefGoogle Scholar
  63. Willis, K.J., van Andel, T.H., 2004. Trees or no trees? The environments of central and eastern Europe during the last glaciation. Quat. Sci. Rev 23, 2369–2387.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  1. 1.Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland

Personalised recommendations