Advertisement

Mammalian Biology

, Volume 81, Issue 6, pp 644–650 | Cite as

Isotopic niche structure of a mammalian herbivore assemblage from a West African savanna: Body mass and seasonality effect

  • Chabi Adéyèmi Marc Sylvestre DjagounEmail author
  • Daryl Codron
  • Judith Sealy
  • Guy A. Mensah
  • Brice Sinsin
Original investigation

Abstract

Understanding the mechanisms of species coexistence within local assemblages can play a crucial role in conservation of a species. There is little understanding of how large mammalian bovid species from West Africa partition diet resources, and to what extent they may vary their diet and habitat selection seasonally in order to coexist. Here we studied an assemblage of eleven bovid species in Pendjari Biosphere Reserve, West Africa and used faecal stable isotopes of carbon (δ13C) and nitrogen (δ15N) to test the impact of body mass diet partitioning at a seasonal scale. We found a significant positive relationship between isotopic niche similarity and body size similarity both in dry (p < 0.001) and wet (p < 0.001) season. Partitioning of carbon isotope niches is at least partly due to interactions amongst species rather than historical effects. Our findings also show numerous patterns in resource partitioning amongst the 11 bovid species studied, suggesting that different species used dietary resources in contrasting ways. In practice, actual resource competition between bovid species is difficult to demonstrate, but there exists much overlap in diet along the stable carbon isotope axis for most of the studied species. However we conclude that in our study area, especially in the wet season, niche breadth and diet overlap remain large. Abundant resources and low herbivore densities mean there is no need for herbivores to specialize, because they do not have to compete over scarce resources.

Keywords

Diet breadth Body mass Browser Grazer Competition Coexisting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P., 1980. Some comments on measuring niche overlap. Ecology 61, 44–49.CrossRefGoogle Scholar
  2. Amahowé, O.I., Houessou, L.G., Nago, G., Nobime, G., Ahokpè, E., Djagoun, C.A.M.S., Toko, I., Bonou, W., Gouwakinnou, G., Zannou, O., Agossa, N., Kindjinou, A., 2013. Dénombrement pédestre de la faune dans la Réserve de Biosphère de la Pendjari et la Réserve de Biosphère Transfrontalière du W-Bénin. CENAGREF-PAPE, Cotonou, Bénin.Google Scholar
  3. Ambrose, S.H., 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293–317.CrossRefGoogle Scholar
  4. Assédé, E.P.S., Adomou, A.C., Sinsin, B., 2012. Magnoliophyta, Biosphere Reserve of Pendjari, Atacora Province Benin. Check List. 8, 642–661.CrossRefGoogle Scholar
  5. Beekman, J.H., Prins, H.H.T., 1989. Feeding strategies of sedentary large herbivores in East Africa, with emphasis on the African buffalo. J. Afr. Ecol. 27, 129–147.CrossRefGoogle Scholar
  6. Bell, R.H.V., 1971. Agrazing system in the Serengeti. Sci. Am. 225, 86–93.Google Scholar
  7. Belovsky, G.E., 1986. Generalist herbivore foraging and its role in competitive interactions. Am. Zool. 26, 51–69.CrossRefGoogle Scholar
  8. Bowen, W.D., Siniff, D.B., 1999. Distribution, population biology, and feeding ecology of marine mammals. In: Renolds, I.I.I.J.E., Rommel, S.A. (Eds.), Biology of Marine Mammals. Smithsonian Institution Press, Washington, D.C, pp. 423–484.Google Scholar
  9. Cerling, T.E., Harris, J.M., Passey, B.H., 2003. Diets of East African Bovidae based on stable isotope analysis. J. Mamm. 84, 456–470.CrossRefGoogle Scholar
  10. Clauss, M., Schwarm, A., Ortmann, S., Streich, W.J., Hummel, J., 2007a. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comp. Biochem. Physiol. A 148, 249–265.CrossRefGoogle Scholar
  11. Clauss, M., Streich, W.J., Schwarm, A., Ortmann, S., Hummel, J., 2007b. The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups. Oikos 116, 209–216.CrossRefGoogle Scholar
  12. Codron, D., Clauss, M., 2010. Rumen physiology constraints diet niche: linking digestive physiology and food selection across wild ruminant species. Can. J. Zool. 88, 1129–1138.CrossRefGoogle Scholar
  13. Codron, D., Codron, J., 2008. Reliability of 813C and 815N in faeces for reconstructing savanna herbivore diet. Mamm. Biol. 74, 36–48.CrossRefGoogle Scholar
  14. Codron, D., Lee-Thorp, J.A., Sponheimer, M., Codron, J., Brink, J.S., 2007. Significance of diet type and diet quality for ecological diversity of African ungulates. J. Anim. Ecol. 76, 526–537.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Codron, D., Brink, J.S., Rossouw, L., Clauss, M., Codron, J., Lee-Thorp, J.A., Sponheimer, M., 2008. Functional differentiation of African grazing ruminants: an example of specialized adaptations to very small changes in diet. Biol. J. Linn. Soc. 94, 755–764.CrossRefGoogle Scholar
  16. Codron, D., Codron, J., Lee-Thorp, J.A., Sponheimer, M., Grant, C.C., Brink, J.S., 2009. Stable isotope evidence for nutritional stress, competition, and loss of functional habitat as factors limiting recovery of rare antelope in southern Africa. J. Arid. Environ. 73, 449–457.CrossRefGoogle Scholar
  17. Codron, D., Hull, J., Brink, J.S., Codron, J., Ward, D., Clauss, M., 2011. Effect of competition on niche dynamics of syntopic grazing ungulates: contrasting the predictions of habitat selection models using stable isotope analysis. Evol. Ecol. Res. 13, 217–235.Google Scholar
  18. Crawford, K., McDonald, R.A., Bearhop, S., 2008. Applications of stable isotope techniques to the ecology of mammal. Mamm. Rev. 38, 87–107. de Iongh, H.H., de Jong, C.B., vanGoethem, J., Klop, E., Brunsting, A.M.H., Loth, P.E., Prins, H.H.T., 2011. Resource partitioning among African savanna herbivores in North Cameroon: the importance of diet composition, food quality and body mass. J. Trop. Ecol. 27, 503–513.Google Scholar
  19. Demment, M.W., Van Soest, P.J., 1985. A nutritional explanation for body-size patterns of ruminant and non ruminant herbivores. Am. Nat. 125, 641–672.CrossRefGoogle Scholar
  20. Diamond, J., 1986. Evolution of ecological segregation in the New Guinea montane avifauna. In: Diamond, J., Case, T.J. (Eds.), Community Ecology. Harper & Row, New York, pp. 98–125.Google Scholar
  21. Djagoun, C.A.M.S., Codron, D., Sealy, J., Mensah, G.A., Sinsin, B., 2013a. Stable carbon isotope analysis of the diets of West African bovids in Pendjari Biosphere Reserve (Northern Benin). South Afr. J. Wildl. Res. 43, 33–43.CrossRefGoogle Scholar
  22. Djagoun, C.A.M.S., Kassa, B., Mensah, G.A., Sinsin, B.A., 2013b. Seasonal habitat and diet partitioning between two sympatric bovid species in Pendjari Biosphere Reserve (Northern Benin): waterbuck and western kob. Afri. Zool. 48, 279–289.CrossRefGoogle Scholar
  23. Estes, R.D., 1991. The Behavior Guide to African Mammals, Including Hoofed Mammals, Carnivores Primates. University of California Press Berkeley.Google Scholar
  24. Fisher, R.A., 1932. Statistical Methods for Research Workers, 4th edition. Oliver and Boyd, London.Google Scholar
  25. Fry, B., 2006. Stable Isotope Ecolog. Springer Science, NY, USA, 390 p. Gagnon, M., Chew, A., 2000. Dietary preferences in extant african bovidae. J. Mamm. 81, 490–511.Google Scholar
  26. Gordon, I.J., Illius, A.W., 1989. Resource partitioning by ungulates on the Isle of Rhum. Oecologia 79, 383–389.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gotelli, N.J., Graves, G.R., 1996. Null Models in Ecology Smithsonian. Institution Press, Washington.Google Scholar
  28. Haltenorth, T., 1988. The Collins Field Guide to the Mammals of Africa and Madagascar. S. Greene Press, Lexington Massachusetts.Google Scholar
  29. Henley, S.R., Ward, D., 2006. An evaluation of diet quality in two desert ungulates exposed to hyper-arid conditions. Afr. J. Range For. Sci. 23, 185–190.CrossRefGoogle Scholar
  30. Hofmann, R.R., 1989. Evolutionary steps of ecophysical adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jarman, P.J., 1974. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–266.CrossRefGoogle Scholar
  32. Jenkins, K.J., Wright, R.G., 1988. Resource partitioning and competition among cervids in the northern Rocky Mountains. J. Appl. Ecol. 25, 11–24.CrossRefGoogle Scholar
  33. Kassa, B., Libois, R., Sinsin, B., 2007. Diet and food preference of the waterbuck (Kobus ellipsiprymnus defassa) in the Pendjari National Park, Benin. Afr. J. Ecol. 46, 303–310.CrossRefGoogle Scholar
  34. Kingdon, J., 1997. The Kingdon Field Guide to African Mammals. Academic Press, London and New York.Google Scholar
  35. Lawlor, L.R., 1980. Structure and stability in natural and randomly constructed competitive communities. Am. Nat. 116, 394–408.CrossRefGoogle Scholar
  36. Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-Peyer, CM., Harrison, E., 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Macdonald, D.W., 1984. The Encyclopedia of Mammals. Facts On File, New York. Müller, D.W.H., Codron, D., Meloro, C., Munn, A., Schwarm, A., Hummel, J., Clauss, M., 2013. Assessing the Jarman-Bell Principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores.Google Scholar
  38. Assessing the Jarman. Comp. Biochem. Physiol 164, 129–140.Google Scholar
  39. Murphy, B.P., Bowman, D.M.J.S., 2006. Kangaroo metabolism does not cause the relationship between bone collagen 815N and water availability. Funct. Ecol. 20, 1062–1069.CrossRefGoogle Scholar
  40. Mysterud, A., 2000. Diet overlap among ruminants in Fennoscandia. Oecologia 124, 130–137.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Newsome, S.D., Martinez del Rio, C., Bearhop, S., Phillips, D.L., 2007. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436.CrossRefGoogle Scholar
  42. Pianka, E.R., 1986. Ecology and Natural History of Desert Lizards. Princeton University Press, Princeton.CrossRefGoogle Scholar
  43. Prins, H.H.T., Olff, H., 1998. Species richness of African grazer assemblages: towards a functional explanation. In: Newbery, D.M., Prins, H.H.T., Brown, N.D. (Eds.), Dynamics of Tropical Communities Symposia of the British Ecological Society. Blackwell Science, Oxford.Google Scholar
  44. Prins, H.H.T., De Boer, W.F., Van Oeveren, H., Correia, A., Mafuca, J., Ollf, H., 2006. Co-existence and niche segregation of three small bovid species in southern Mozambique. Afri. J. Ecol. 44, 186–198.CrossRefGoogle Scholar
  45. Prins, H.H.T., 1996. Behaviour and ecology of the African buffalo. In: Social Inequality and Decision Making. Chapman and Hall, London.CrossRefGoogle Scholar
  46. Ritchie, M.E., Olff, H., 1999. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557–560.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Robbins, C.T., Felicetti, LA, Sponheimer, M., 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144, 534–540.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Rosenzweig, M., 1996. Species Diversity in Space and Time. Cambridge University Press, Cambridge.Google Scholar
  49. Schuette, J.R., Leslie, D.M., Lochmiller, R.L., Jenks, J.A., 1998. Diets of hartebeest and roan antelope in Burkina Fasso: support of the long-faced hypothesis. J. Mammal. 79, 426–436.CrossRefGoogle Scholar
  50. Sealy, J.C, vander Merwe, N.J., Lee-Thorp, J.A., Lanham, J.L., 1987. Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing. Geoch. Cosmochim. Acta 51, 2707–2717.CrossRefGoogle Scholar
  51. Sinsin, B., Tehou, A.C., Daouda, I., Saidou, A., 2002. Abundance and species richness of larger mammals in Pendjari National Park in Benin. Mammalia 66, 369–380.CrossRefGoogle Scholar
  52. Sponheimer, M., Lee-Thorp, J.A., de Ruiter, D.J., Smith, J.M., van der Merwe, N.J., Reed, K., Grant, C.C., Ayliffe, L.K., Robinson, T.F., Heidelberger, C., Marcus, W., 2003. Diets of southern African Bovidae: stable isotope evidence. J. Mamm. 84, 471–479.CrossRefGoogle Scholar
  53. Stewart, K.M., Bowyer, R.T., Kie, J.G., Dick, B.L., Ben-David, M., 2003. Niche partitioning among mule deer, elk, and cattle: do stable isotopes reflect dietary niche? Ecoscience 10, 297–302.Google Scholar
  54. Stuart, C., Stuart, T., 1997. Field Guide to the Larger Mammals of Africa. Struik Publishers, Cape Town.Google Scholar
  55. Traill, L.W., 2004. Seasonal utilization of habitat by large grazing herbivores in semi-arid Zimbabwe. S. Afr. J. Wildl. Res. 34, 13–24.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2016

Authors and Affiliations

  • Chabi Adéyèmi Marc Sylvestre Djagoun
    • 1
    • 4
    Email author
  • Daryl Codron
    • 2
    • 3
  • Judith Sealy
    • 4
  • Guy A. Mensah
    • 1
    • 5
  • Brice Sinsin
    • 1
  1. 1.Laboratory of Applied Ecology, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  2. 2.Florisbad Quaternary ResearchNational MuseumBloemfonteinSouth Africa
  3. 3.Centre for Environmental ManagementUniversity of the Free StateBloemfonteinSouth Africa
  4. 4.Department of ArchaeologyUniversity of Cape TownRondeboschSouth Africa
  5. 5.National Institute of Agricultural Research of Benin (INRAB)CotonouBenin

Personalised recommendations