Advertisement

Mammalian Biology

, Volume 81, Issue 6, pp 558–570 | Cite as

On the growth of the largest living rodent: Postnatal skull and dental shape changes in capybara species (Hydrochoerus spp.)

  • M. Aeschbach
  • J. D. Carrillo
  • M. R. Sánchez-VillagraEmail author
Original investigation

Abstract

We report on intraspecific and interspecific morphological variation in the cranium, mandible and teeth along the ontogenetic trajectories of the two species of the largest living rodent, the capybara. A three dimensional geometric morphometrics approach was used to compare 171 Hydrochoerus hydrochaeris and 44 Hydrochoerus isthmius specimens ranging from newborn to adult. The specimens were assigned to seven different age classes according to cranial suture closure. The species can be differentiated in the morphospace occupation. They differ in the angle between the braincase and rostrum—H. hydrochaeris displays a straight transition whereas the snout of H. isthmius is inclined ventrally. The males in both species are bigger than the females, but no shape differences were detected. The youngest two age classes (up to 0.5 months and 0.5–10 months; before reaching sexual maturity) can be morphologically differentiated from the older age classes. Shape changes during growth are similar in both species: with increasing age, the round neurocranium flattens and the proportionally short snout elongates. Moreover, both species follow similar ontogenetic trajectories. H. hydrochaeris and H. isthmius can be differentiated by size and shape; the shape differences may indicate differences in diet and habitat. This study illustrates the relevance of an ontogenetic perspective to characterize species and examine the bases of disparity in adults. Furthermore, variation recorded in dental features serves to evaluate taxonomic and evolutionary aspects in fossil capybaras.

Keywords

Ontogeny Geometric morphometrics Body size South America Heterochrony 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D.C., Otárola-Castillo, E., 2013. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399,  https://doi.org/10.1111/2041-210X.12035.CrossRefGoogle Scholar
  2. Álvarez, A., Pérez, S.I., Verzi, D.H., 2015. The role of evolutionary integration in the morphological evolution of the skull of caviomorph rodents (Rodentia: Hystricomorpha). Evol. Biol. 42(3), 312–327,  https://doi.org/10.1007/s11692-015-9326-7.CrossRefGoogle Scholar
  3. Barreto, G.R., Quintana, R.D., 2013. Foraging strategies and feeding habits of capybaras. In: Moreira, J.R., Ferraz, K.M.P.M.B., Herrera, E.A., Macdonald, D.W. (Eds.), Capybara: Biology, Use and Conservation of an Exceptional Neotropical Species. Springer Science & Business Media, pp. 83–96.Google Scholar
  4. Bookstein, F.L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge.Google Scholar
  5. Cardini, A., O’Higgins, P., 2004. Patterns of morphological evolution in Marmota (Rodentia, Sciuridae): geometric morphometrics of the cranium in the context of marmot phylogeny, ecology and conservation. Biol. J. Linn. Soc. 82, 385–407,  https://doi.org/10.1111/j.10958312.2004.00367.x.Google Scholar
  6. Cardini, A., Polly, P.D., 2013. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4,  https://doi.org/10.1038/ncomms3458.
  7. Christiansen, P., 2012. The making of a monster: postnatal ontogenetic changes in craniomandibular shape in the great sabercat Smilodon. PLoS One 7 (1), e29699,  https://doi.org/10.1371/journal.pone.0029699.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Carrillo, J.D., Sánchez-Villagra, M.R., 2015. Giant rodents from the Neotropics: diversity and dental variation of late Miocene neoepiblemid remains from Urumaco, Venezuela. Paläontologische Zeitschrift 89, 1057–1071,  https://doi.org/10.1007/s12542-015-0267-3.CrossRefGoogle Scholar
  9. Clauss, M., Dittmann, M.T., Müller, D.W.H., Zerbe, P., Codron, D., 2014. Low scaling of a life history variable: analysing eutherian gestation periods with and without phylogeny-informed statistics. Mamm. Biol. 79 (1), 9–16.CrossRefGoogle Scholar
  10. Deschamps, CM., Olivares, I., Vieytes, E.C., Vucetich, M.G., 2007. Ontogeny and diversity of the oldest capybaras (Rodentia: Hydrochoeridae; late Miocene of Argentina). J. Vertebr. Paleontol. 27, 683–692,  https://doi.org/10.1671/02724634(2007) 27[683:OADOTO]2.0.CO;2.CrossRefGoogle Scholar
  11. Deschamps, CM., Vucetich, M.G., Montalvo, C.I., Zárate, M.A., 2013. Capybaras (Rodentia, Hydrochoeridae, Hydrochoerinae) and their bearing in the calibration of the late Miocene-Pliocene sequences of South America. J. S. Am. Earth Sci. 48, 145–158,  https://doi.org/10.1016/jjsames.2013.09.007.CrossRefGoogle Scholar
  12. Drake, A.G., Klingenberg, C.P., 2008. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proc. R. Soc. Lond. B: Biol. Sci. 275, 71–76,  https://doi.org/10.1098/rspb.2007.1169.CrossRefGoogle Scholar
  13. Farmer, M.A., German, R.Z., 2004. Sexual dimorphism in the craniofacial growth of the guinea pig (Cavia porcellus). J. Morphol. 259, 172–181,  https://doi.org/10.1002/jmor.10180.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Flores, D.A., Abdala, F., Giannini, N., 2010. Cranial ontogeny of Caluromys philander (Didelphidae: Caluromyinae): a qualitative and quantitative approach. J. Mamm. 91 (3), 539–550,  https://doi.org/10.1644/09-mamm-a-291.1.Google Scholar
  15. Flores, D.A., Abdala, F., Martin, G.M., Giannini, N.P., Martinez, J.M., 2015. Post-weaning growth in shrew opossums (Caenolestidae): a comparison with bandicoots (Peramelidae) and carnivorous marsupials. J. Mamm. Evol. 22, 285–303,  https://doi.org/10.1007/s10914014-9279-0.CrossRefGoogle Scholar
  16. Fuchs, M., Geiger, M., Stange, M., Sánchez-Villagra, M.R., 2015. Growth trajectories in the cave bear and its extant relatives: an examination of ontogenetic patterns in phylogeny. BMC Evol. Biol. 15, 239, 10.1186/s12862–015–0521-z.Google Scholar
  17. Goodall, C., 1991. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Ser. B (Methodol.), 285–339.Google Scholar
  18. Hautier, L., Lebrun, R., Cox, P.G., 2012. Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification.J. Morphol. 273, 1319–1337,  https://doi.org/10.1002/jmor.20061.CrossRefGoogle Scholar
  19. Herrel, A., Fabre, A.-C, Hugot, J.P., Keovichit, K., Adriaens, D., Brabant, L., Van Hoorebeke, L., Cornette, R., 2012. Ontogeny of the cranial system in Laonastes aenigmamus. J. Anat. 221, 128–137,  https://doi.org/10.1111/j.1469-7580.2012.01519.x.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Herring, S.W., 1993. Formation of the vertebrate face: epigenetic and functional influences. Am. Zool. 33 (4), 472–483,  https://doi.org/10.1093/icb/33.4.472.CrossRefGoogle Scholar
  21. Hughes, P.C.R., Tanner, J.M., Williams, J.P.G., 1978. A longitudinal radiographic study of the growth of the rat skull. J. Anat. 127, 83–91.PubMedPubMedCentralGoogle Scholar
  22. Hulbert, R.C., 2001. Mammalia 4-rodents and Lagomorpha. In: Hulbert, R.C. (Ed.), The Fossil Vertebrates of Florida. University Press of Florida, p. 226.Google Scholar
  23. Kerber, L., Ribeiro, A.M., 2011. Capybaras (Rodentia: Hystricognathi: Hydrochoeridae) from the late Pleistocene of southern Brazil. Neues Jahrbuch fürGeologie und Paläontologie Abhandlungen 261, 1–18  https://doi.org/10.1127/0077-7749/2011/0142.CrossRefGoogle Scholar
  24. Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Res. 11, 353–357,  https://doi.org/10.1111/j.1755-0998.2010.02924.x.CrossRefGoogle Scholar
  25. Klingenberg, C.P., Marugán-Lobón, J., 2013. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610,  https://doi.org/10.1093/sysbio/syt025.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Klingenberg, C.P., McIntyre, G.S., 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 1363–1375,  https://doi.org/10.2307/2411306.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kolb, C., Scheyer, T.M., Lister, A.M., Azorit, C., de Vos, J., Schlingemann, M.A., Rössner, G.E., Monaghan, N.T., Sánchez-Villagra, M.R., 2015. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol. Biol. 15, 19,  https://doi.org/10.1186/s12862-015-0295-3.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kruska, D., 1970. Veränderungendes Zentralnervensystems vonWild-und Hausschwein. Zeitschrift Anatomie Entwicklungsgeschichte 131, 291–324.Google Scholar
  29. Kruska, D., 1996. The effect of domestication on brain size and composition in the mink (Mustela vison). J. Zool. 239, 645–661,  https://doi.org/10.1111/j.14697998.1996.tb05468.x.CrossRefGoogle Scholar
  30. La Croix, S., Holekamp, K.E., Shivik, J.A., Lundrigan, B.L., Zelditch, M.L., 2011. Ontogenetic relationships between cranium and mandible in coyotes and hyenas. J. Morphol. 272, 662–674,  https://doi.org/10.1002/jmor.10934.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lawing, A.M., Polly, P.D., 2010. Geometric morphometrics: recent applications to the study of evolution and development. J. Zool. 280, 1–7.CrossRefGoogle Scholar
  32. Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., Bookstein, F.L., 2004. Comparison of cranial ontogenetic trajectories among great apes and humans. J. Hum. Evol. 46, 679–698,  https://doi.org/10.1016/jjhevol.2004.03.006.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Mitteroecker, P., Gunz, P., Windhager, S., Schaefer, K., 2013. A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix 24, 59–66.Google Scholar
  34. Mones, A., 1991. Monografía de la familia Hydrochoeridae (Mammalia: Rodentia). Senckenbergische Naturforschende Gesellschaft 134, 1–235.Google Scholar
  35. Mones, A., Ojasti, J., 1986. Hydrochoerus hydrochaeris. Mamm. Species, 1–7.Google Scholar
  36. Moreira, J.R., Alvarez, M.R., Tarifa, T., Pacheco, V., Taber, A., Tirira, D.G., Herrera, E.A., Ferraz, K.M.P.M.B., Aldana-Domínguez, J., Macdonald, D.W., 2013. Taxonomy, natural history and distribution of the capybara. In: Moreira, J.R., Ferraz, K.M.P.M.B., Herrera, E.A., Macdonald, D.W. (Eds.), Capybara: Biology, Use and Conservation of an Exceptional Neotropical Species. Springer Science & Business Media, pp. 3–37.Google Scholar
  37. Morrone, J.J., 2014. Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota. Cladistics 30, 202–214,  https://doi.org/10.1111/cla.12039.CrossRefGoogle Scholar
  38. Nasif, N.L., Abdala, F., 1873. Craniodental ontogeny of the pacarana Dinomys branickii Peters (Rodentia, Hystricognathi, Caviomorpha, Dinomyidae). J. Mamm. 96, 1224–1244,  https://doi.org/10.1093/jmammal/gyv131.CrossRefGoogle Scholar
  39. O’Regan, H.J., Kitchener, A.C., 2005. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm. Rev. 35, 215–230,  https://doi.org/10.1111/j.1365-2907.2005.00070.x.CrossRefGoogle Scholar
  40. Ojasti, J., 2011. Estudio Biológico Del Chigüire o Capibara. Equinoccio—Universidad Simón Bolívar—Academia De Ciencias Físicas, Matemáticas y Naturales, Caracas.Google Scholar
  41. Ozgul, A., Childs, D.Z., Oli, M.K., Armitage, K.B., Blumstein, D.T., Olson, L.E., Tuljapurkar, S., Coulson, T., 2010. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466 (7305), 482–485,  https://doi.org/10.1038/nature09210.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pérez, M.E., Vallejo-Pareja, M.C, Carrillo, J.D. Jaramillo, C., 2016. Pliocene capybaras (Rodentia, Caviidae) from northern South America (Guajira, Colombia), and its implications in the Great American Biotic Interchange. J. Mamm. Evol. R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://doi.org/www.R-project.org//.
  43. Rohlf, F.J., Bookstein, F.L., 2003. Computing the uniform component of shape variation. Syst. Biol. 52, 66–69,  https://doi.org/10.1080/10635150390132759.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Rohlf, F.J., Slice, D., 1990. Extensions ofthe Procrustes method forthe optimal superimposition of landmarks. Syst. Zool. 39, 40–59.CrossRefGoogle Scholar
  45. Saragusty, J., Shavit-Meyrav, A., Yamaguchi, N., Nadler, R., Bdolah-Abram, T., Gibeon, L., Hildebrandt, T.B., Shamir, M.H., 2014. Comparative skull analysis suggests species-specific captivity-related malformation in lions (Panthera leo). PloS one 9,  https://doi.org/10.1371/journal.pone.0094527.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Segura, V., Prevosti, F., 2012. A quantitative approach to the cranial ontogeny of Lycalopex culpaeus (Carnivora: Canidae). Zoomorphology 131, 79–92,  https://doi.org/10.1007/s00435-012-0145-4.CrossRefGoogle Scholar
  47. Segura, V., Prevosti, F., Cassini, G., 2013. Cranial ontogeny in the puma lineage, puma concolor Herpailurus yagouaroundi, and Acinonyxjubatus (carnivora: Felidae): a three-dimensional geometric morphometric approach. Zool. J. Linn. Soc. 169, 235–250,  https://doi.org/10.1111/zoj.12047.CrossRefGoogle Scholar
  48. Sheets, H.D., Zelditch, M.L., 2013. Studying ontogenetic trajectories using resampling methods and landmark data. Hystrix Italian J. Mamm. 24, 67–73  https://doi.org/10.4404/hystrix-24.1-6332.
  49. Swiderski, D.L., Zelditch, M.L., 2013. The complex ontogenetic trajectory of mandibular shape in a laboratory mouse. J. Anat. 223, 568–580,  https://doi.org/10.1111/joa.12118.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Tanner, J.B., Zelditch, M.L., Lundrigan, B.L., Holekamp, K.E., 2010. Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena (Crocuta crocuta). J. Morphol. 271, 353–365,  https://doi.org/10.1002/jmor.10802.PubMedPubMedCentralGoogle Scholar
  51. Trapido, H., 1949. Gestation period, young and maximum weight ofthe Isthmian capybara. Hydrochoerus isthmius Goldman. J. Mamm. 30, 433,  https://doi.org/10.1093/jmammal/30.4.433.CrossRefGoogle Scholar
  52. Valenzuela-Lamas, S., Baylac, M., Cucchi, T., Vigne, J.D., 2011. House mouse dispersal in Iron Age Spain : a geometric morphometrics appraisal. Biol. J. Linn. Soc. 102, 483–497,  https://doi.org/10.1111/j.1095-8312.2010.01603.x.CrossRefGoogle Scholar
  53. Vassallo, A.I., Antenucci, D.A., 2015. Biology of caviomorph rodents: diversity and evolution. In: SAREM Series A Mammalogical Research. Buenos Aires.Google Scholar
  54. Vucetich, M.G., Deschamps, CM., Olivares, A.I., Dozo, M.T., 2005. Capybaras, size, shape, and time: a model kit. Acta Palaeontol. Polonica 50, 259–272.Google Scholar
  55. Vucetich, M.G., Deschamps, CM., Pérez, M.E., Montalvo, C.I., 2014. The taxonomic status ofthe Pliocene capybaras (Rodentia) Phugatherium Ameghino and Chapalmatherium Ameghino. Ameghiniana 51, 173–183 dx.doi.org/10.5710/AMGH.05.02.2014.2074.CrossRefGoogle Scholar
  56. Vucetich, M.G., Deschamps, CM., Pérez, M.E., 2015a. The first capybaras (Rodentia, Caviidae Hydrochoerinae) involved in the Great American Biotic Interchange. Ameghiniana 52, 324–333,  https://doi.org/10.5710/AMGH.07.10.2015.2891.CrossRefGoogle Scholar
  57. Vucetich, M.G., Arnal, M., Deschamps, CM., Pérez, M.E., Vieytes, E.C, 2015b. A brief history of caviomorph rodents as told by the fossil record. In: Vassallo, A.I., Antenucci, D. (Eds.), Biology of Caviomorph Rodents: Diversity and Evolution. SAREM Series A Mammalogical Research., pp. 11–62.Google Scholar
  58. Weisbecker, V., Schmid, S., 2008. Autopodial skeletal diversity in hystricognath rodents: functional and phylogenetic aspects. Mamm. Biol. 72 (1), 27–44.CrossRefGoogle Scholar
  59. Weston, E.M., 2003. Evolution of ontogeny in the hippopotamus skull: using allometry to dissect developmental change. Biol. J. Linn. Soc. 80, 625–638.CrossRefGoogle Scholar
  60. Wilson, L.A.B., 2011. Comparison of prenatal and postnatal ontogeny: cranial allometry in the African striped mouse (Rhabdomys pumilio). J. Mamm. 92, 407–420.CrossRefGoogle Scholar
  61. Wilson, L.A.B., Werneburg, I., 2014. Quantifying evolutionary development using non-model organisms: integrating morphology, metrical frameworks, and gene expression. J. Exp. Zool. Part B: Mol. Dev. Evol. 322 (8), 555–557.CrossRefGoogle Scholar
  62. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., Fink, W.L., 2004a. Geometric Morphometrics for Biologists: a Primer. Elsevier Academic Press, San Diego.Google Scholar
  63. Zelditch, M.L., Lundrigan, B., Sheets, H.D., Garland, T., 2003. Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. J. Evol. Biol. 16 (4), 708–720,  https://doi.org/10.1046/j.1420-9101.2003.00568.x.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Zelditch, M.L., Lundrigan, B., Garland, T., 2004b. Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evol. Dev. 6 (3), 194–206,  https://doi.org/10.1111/j.1525-142X.2004.04025.x.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Zelditch, M.L., Calamari, Z.T., Swiderski, D.L., 2016. Disparate postnatal ontogenies do not add to the shape disparity of infants. Evol. Biol.,  https://doi.org/10.1007/s11692-016-9370-y.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2016

Authors and Affiliations

  • M. Aeschbach
    • 1
  • J. D. Carrillo
    • 1
  • M. R. Sánchez-Villagra
    • 1
    Email author
  1. 1.Paläontologisches Institut und MuseumUniversität ZürichZürichSwitzerland

Personalised recommendations