Advertisement

Mammalian Biology

, Volume 81, Issue 2, pp 205–213 | Cite as

Optimization of sampling effort in carnivore surveys based on signs: A regional-scale study in a Mediterranean area

  • Jesús Carreras-Duro
  • Marcos MoleónEmail author
  • José Miguel Barea-Azcón
  • Elena Ballesteros-Duperón
  • Emilio Virgós
Original Investigation

Abstract

Understanding species distribution is central to ecology, evolution and wildlife conservation. However, detecting species presence in the field may be challenging, especially for scarce, elusive and wide-ranging animals such as mammalian carnivores. Here we undertook a large-scale methodological study to assess scat sampling effort required to detect five mesocarnivore species in a Spanish Mediterranean area. Our goals were to: (1) evaluate the optimal effort (i.e. transect length) needed to detect scats of each species; and (2) examine if this sampling effort depends on environmental factors. First, we constructed “curves of first detection” for each carnivore species and evaluated the most cost-effective sampling effort. Second, we used Generalized Linear Mixed Models (GLMMs) to relate the transect length to first detection of each species in each positive transect to a comprehensive set of environmental variables. Our results suggested that sampling effort in this study, namely the transect length needed to detect a given species, can be substantially shortened for two species (red fox and stone marten) with a relatively low reduction in the information on their presence. The most efficient scenario corresponded to a transect length of 1.5 km, where red foxes and stone martens would be detected in 72.95 and 65.43% of the positive transects, respectively. However, different sampling approaches would be advisable for the remaining species. We also found that the sampling effort was weakly affected by environmental constraints. Our study may contribute to the design of more efficient scat-based carnivore sampling methodologies elsewhere. In particular, we propose that our results can be successfully extrapolated to other areas of the Iberian Peninsula with close abundances of the species considered and similar environmental characteristics.

Keywords

Carnivore distribution Large spatial surveys Methodological studies Non-invasive monitoring Transect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballesteros-Duperón, E., Virgós, E., Moleón, M., Barea-Azcón, J.M., Gil-Sánchez, J.M., 2015. How accurate are coat traits for discriminating wild and hybrid forms of Felis silvestris? Mammalia, http://dx.doi.org/10.1515/mammalia-2013-0026.Google Scholar
  2. Barbraud, C, Thiebot,J.-B., 2009. On the importance of estimating detection probabilities from at-sea surveys of flying seabirds, J. Avian Biol. 40, 584–590.CrossRefGoogle Scholar
  3. Barea-Azcón, J.M., Ballesteros-Duperón, E., Moleón, M., Chirosa, M., Technical report 2004a. Mamíferos carnívoros en la provincia de Granada: atlas de distribución y medidas de gestión. EGMASA-Consejería de Medio Ambiente, Junta de Andalucía, Granada.Google Scholar
  4. Barea-Azcón, J.M., Ballesteros-Duperón, E., Moleón, M., Gil-Sánchez, J.M., Virgós, E., Chirosa, M., 2004b. Distribución de los mamíferos carnívoros en la provincia de Granada. Acta Granatense 3, 43–53.Google Scholar
  5. Barea-Azcón, J.M., Virgós, E., Ballesteros-Duperón, E., Moleón, M., Chirosa, M., 2007. Surveying carnivores at large spatial scales: a comparison of four broad-applied methods, Biodivers. Conserv. 16, 1213–1230.CrossRefGoogle Scholar
  6. Barton, K., 2013. MuMIn: Multimodel Inference. R Package Version 1.9.13, Available at: https://doi.org/CRAN.R-project.org/package=MuMIn (accessed 15.05.14).Google Scholar
  7. Bates, D., Maechler, M., Bolker, B., Walker, S., 2013. lme4: Linear Mixed-effects Models Using Eigen and S4. R Package Version 1.0-5, Available at: https://doi.org/CRAN.R-project.org/package=lme4 (accessed 15.05.14).Google Scholar
  8. Blanco, J.C, 1998. Mamíferos de España. Vol. I, Insectívoros, Quirópteros, Primates y Carnívoros de la peninsula Ibérica, Baleares y Canarias. Editorial Planeta, Barcelona.Google Scholar
  9. Blanco-Garrido, F., Rivas, A., 2014. Gineta, Genetta genetta (Linnaeus, 1758). In: Calzada, J., Clavero, M., Fernández, A. (Eds.), Guía virtual de los indicios de los mamíferos de la Península Ibérica, Islas Baleares y Canarias. SECEM, Available at: https://doi.org/www.secem.es/wp-content/uploads/2014/10/014_Genetta_genetta_web.pdf (accessed 19.02.15).Google Scholar
  10. Buckland, S.T., 2006. Point transect surveys for songbirds: robust methodologies, Auk 123, 345–357.CrossRefGoogle Scholar
  11. Bunnell, D.B., Madenjian, C.P., Claramunt, R.M., 2006. Long-term changes of the Lake Michigan fish community following the reduction of exotic alewife (Alosa pseudoharengus), Can. J. Fish Aquat. Sci. 63, 2434–2446.CrossRefGoogle Scholar
  12. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference. A Practical Information Theoretic Approach, 2nd ed. Springer-Verlag, New York.Google Scholar
  13. Caro, T.M., 2003. Umbrella species: critique and lessons from East Africa, Anim. Conserv. 6, 171–181.CrossRefGoogle Scholar
  14. Davison, A., Birks, J., Brookes, R.C., Braithwaite, A.C., Messenger, J.E., 2002. On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats, J. Zool. 257, 141–143.CrossRefGoogle Scholar
  15. Delibes-Mateos, M., Delibes, M., Ferreras, P., Villafuerte, R., 2008. Key role of European rabbits in the conservation of the western Mediterranean basin hotspot, Conserv. Biol. 22, 1106–1117.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst. 40, 677–697.CrossRefGoogle Scholar
  17. Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., Carpenter, S.R., Essington, T.E., Holt, R.D., Jackson, J.B.C., Marquis, R.J., Oksanen, L., Oksanen, T., Paine, R.T., Pikitch, E.K., Ripple, W.J., Sandin, S.A., Scheffer, M., Schoener, S.W., Shurin, J.B., Sinclair, A.R.E., Soulé, M.E., Virtanen, R., Wardle, D.A., 2011. Trophic downgrading of planet Earth, Science 333, 301–306.PubMedCrossRefGoogle Scholar
  18. Evans, P.G.H., Hammond, P.S., 2004. Monitoring cetaceans in European waters, Mammal Rev. 34, 131–156.CrossRefGoogle Scholar
  19. Fedriani, J.M., Palomares, F., Delibes, M., 1999. Niche relations among three sym-patric Mediterranean carnivores, Oecología 121, 138–148.PubMedCrossRefGoogle Scholar
  20. Gerrodette, T., 1987. A power analysis for detecting trends, Ecology 68, 1364–1372.CrossRefGoogle Scholar
  21. Gese, E.M., 2001. Monitoring of terrestrial carnivore populations. In: Gittleman, J.L., Funk, S.M., Macdonald, D.W., Wayne, K.R. (Eds.), Carnivore Conservation. Cambridge University Press, Cambridge, pp. 372–396.Google Scholar
  22. Gil-Sánchez, J.M., Jaramillo, J., Barea-Azcón, J.M., 2015. Strong spatial segregation between wildcats and domestic cats may explain low hybridization rates on the Iberian Peninsula, Zoology 118, 377–385.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gittleman, J.L., Funk, S.M., Macdonald, D.W., Wayne, K.R. (Eds.), 2001. Carnivore Conservation. Cambridge University Press, Cambridge.Google Scholar
  24. GRASS-Development-Team, 2009. Geographic Resources Analysis Support System (GRASS GIS) Software. Open Source Geospatial Foundation, USA, http://grass. osgeo.org (accessed 15.05.14).Google Scholar
  25. Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models, Ecol. Lett. 8, 993–1009.CrossRefGoogle Scholar
  26. Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology, Ecol. Model. 135, 147–186.CrossRefGoogle Scholar
  27. Harrington, L.A., Harrington, A.L., Hughes, J., 2010. The accuracy of scat identification in distribution surveys: American mink, Neovison vison, in the northern highlands of Scotland, Eur.J. Wildl. Res. 56, 377–384.CrossRefGoogle Scholar
  28. Hernandez, P.A., Graham, C.H., Master, L.L., Albert, D.L., 2006. The effect of sample size and species characteristics on performance of different species distribution modelling methods, Ecography 29, 773–785.CrossRefGoogle Scholar
  29. Heydon, M.J., Reynolds, J.C., Short, M.J., 2000. Variation in abundance of foxes (Vulpes vulpes) between three regions of rural Britain, in relation to landscape and other variables, J. Zool. 251, 253–264.CrossRefGoogle Scholar
  30. Kadoya, T., Ishii, H.S., Kikuchi, R., Suda, S.-i., Washitani, I., 2009. Using monitoring data gathered by volunteers to predict the potential distribution of the invasive alien bumblebee Bombus terrestris, Biol. Conserv. 142, 1011–1017.CrossRefGoogle Scholar
  31. Loiselle, B.A., Howell, C.A., Graham, C.H., Goerck, J.M., Brooks, T., Smith, K.G., Williams, P.H., 2003. Avoiding pitfalls of using species-distribution models in conservation planning, Conserv. Biol. 17, 1–10.CrossRefGoogle Scholar
  32. Long, R.A., Donovan, T.M., Mackay, P., Zielinski, W.J., Buzas, J.S., 2007. Comparing scat detection dogs, cameras, and hair snares for surveying carnivores, J. Wildl. Manage. 71, 2018–2025.CrossRefGoogle Scholar
  33. Long, R.A., MacKay, P., Zielinski, W.J., Ray, J.C. (Eds.), 2008. Noninvasive Survey Methods for Carnivores. Island Press, Washington.Google Scholar
  34. Long, R.A., Donovan, T.M., MacKay, P., Zielinski, W.J., Buzas, J.S., 2011. Predicting carnivore occurrence with noninvasive surveys and occupancy modeling, Land. Ecol. 26, 327–340.CrossRefGoogle Scholar
  35. Lozano, J., Malo, A.F., 2012. Conservation of the European wildcat (Felis silvestris) in Mediterranean environments: a reassessment of current threats. In: Williams, G.S. (Ed.), Mediterranean Ecosystems. Nova Science Publishers, pp. 1–32.Google Scholar
  36. Lozano, J., Virgós, E., Malo, A.F., Huertas, D.L., Casanovas, J.G., 2003. Importance of scrub-pastureland mosaics for wild-living cats occurrence in a Mediterranean area: implications forthe conservation orthe wildcat (Felis silvestris), Biodivers. Conserv. 12, 921–935.CrossRefGoogle Scholar
  37. Lozano, J., Moleón, M., Virgós, E., 2006. Biogeographical patterns in the diet of the wildcat, Felis silvestris Schreber, in Eurasia: factors affecting the trophic diversity, J. Biogeogr. 33, 1076–1085.CrossRefGoogle Scholar
  38. Lozano, J., Virgós, E., Cabezas-Díaz, S., 2013. Monitoring European wildcat Felis silvestris populations using scats surveys in central Spain: are population trends related to wild rabbit dynamics or to landscape features? Zool. Stud. 52, 16.Google Scholar
  39. Macdonald, D.W., 1983. The ecology of carnivore social behaviour, Nature 301, 379–384.CrossRefGoogle Scholar
  40. MacKenzie, D.I., Nichols, J.D., Sutton, N., Kawanishi, K., Bailey, L.L., 2005. Improving inferences in population studies of rare species that are detected imperfectly, Ecology 86, 1101–1113.CrossRefGoogle Scholar
  41. Moleón, M., Almaraz, P., Sánchez-Zapata, J.A., 2008. An emerging infectious disease triggering large-scale hyperpredation. PLoS ONE 3, e2307.CrossRefGoogle Scholar
  42. Monterroso, P., Castro, D., Silva, T.L., Ferreras, P., Godinho, R., Alves, P.C., 2013. Factors affecting the (in)accuracy of mammalian mesocarnivore scat identification in South-western Europe, J. Zool. 289, 243–250.CrossRefGoogle Scholar
  43. Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models, Methods Ecol. Evol. 4, 133–142.CrossRefGoogle Scholar
  44. Oliveira, R., Godinho, R., Randi, E., Alves, P.C., 2008. Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula? Philos, Trans. R. Soc. B 363, 2953–2961.CrossRefGoogle Scholar
  45. Padial, J.M., Ávila, E., Gil-Sánchez, J.M., 2002. Feeding habits and overlap among red fox (Vulpes vulpes) and stone marten (Martes foina) in two Mediterranean mountain habitats, Mamm. Biol. 67, 137–146.CrossRefGoogle Scholar
  46. Palomo, L.J., Gisbert, J., Blanco, J.C. (Eds.), 2007. Atlas y Libro Rojo de los Mamíferos Terrestres de España. DGB-SECEM-SECEMU, Madrid.Google Scholar
  47. Peterson, A.T., 2006. Uses and requirements of ecological niche models and related distributional models, Biodivers. Inform. 3, 59–72.CrossRefGoogle Scholar
  48. Pettorelli, N., Olav-Vik, J., Mysterud, A., Gaillard, J.M., Tucker, C.J., Stenseth, N.C., 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change, Trends Ecol. Evol. 20, 503–510.PubMedCrossRefGoogle Scholar
  49. Pineiro, A., Barja, I., Silván, G., Illera, J.C., 2012. Effects of tourist pressure and reproduction on physiological stress response in wildcats: management implications for species conservation, Wildl. Res. 39, 532–539.CrossRefGoogle Scholar
  50. Prugh, L.R., Ritland, C.E., 2005. Molecular testing of observer identification of carnivore feces in the field, Wildl. Soc. Bull. 33, 189–194.CrossRefGoogle Scholar
  51. R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Available at: http://www.R-project.org/ (accessed 15.03.14).Google Scholar
  52. Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger,J., Elmhagen, B., Letnic, M., Nelson, M.P., Schmitz, O.J., Smith, D.W., Wal-lach, A.D., Wirsing, A.J., 2014. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484.CrossRefGoogle Scholar
  53. Rivas-Martínez, S., 1986. Mapas de las Series de Vegetación de España. ICONA, Madrid.Google Scholar
  54. Rodríguez, J.P., Brotons, L., Bustamante, J., Seoane, J., 2007. The application of predictive modelling of species distribution to biodiversity conservation, Divers. Distrib. 13, 243–251.CrossRefGoogle Scholar
  55. Rushton, S.P., Ormerod, S.J., Kerby, G., 2004. New paradigms for modelling species distributions? J, Appl. Ecol. 41, 193–200.Google Scholar
  56. Salgado, I., 2014. Tejóneuropeo, Melesmeles (Linnaeus, 1758). In: Calzada, J., Clavero, M., Fernández, A. (Eds.), Guía virtual de losindiciosde los mamíferos de la Península Ibérica, Islas Baleares y Canarias. SECEM, Available at: http://www.secem. es/wp-content/uploads/2014/08/17_Meles_meles_web.pdf (accessed 19.02.15).Google Scholar
  57. Sharp, A., Norton, M., Marks, A., Holmes, K., 2001. An evaluation of two indices of red fox (Vulpes vulpes) abundance in an arid environment, Wildl. Res. 28, 419–424.CrossRefGoogle Scholar
  58. Stockwell, D.R.B., Peterson, A.T., 2002. Effects of sample size on accuracy of species distribution models, Ecol. Model. 148, 1–13.CrossRefGoogle Scholar
  59. Thorn, M., Green, M., Keith, M., Marnewick, K., Bateman, P.W., Cameron, E.Z., Scott, D.M., 2011. Large-scale distribution patterns of carnivores in northern South Africa: implications for conservation and monitoring, Oryx 45, 579–586.CrossRefGoogle Scholar
  60. Tuyttens, F.A.M., Macdonald, D.W., Swait, S., Cheeseman, C.L., 1999. Estimating population size of Eurasian badgers (Meles meles) using mark-recapture and mark-resight data, J. Mammal. 80, 950–960.CrossRefGoogle Scholar
  61. Urra, F., Lozano, J., Fernandes, M., Espana, A.J., Monterroso, P., 2014. El gato mon-tés, Felis silvestris (Schreber, 1777). In: Calzada, J., Clavero, M., Fernández, A. (Eds.), Guía virtual de los indicios de los mamíferos de la Península Ibérica, Islas Baleares y Canarias. SECEM, Available at: http://www.secem.es/wp-content/ uploads/2015/03/019.-Felis-silvestris-web.pdf (accessed 19.03.15).Google Scholar
  62. Virgós, E., 2001. Relative value of riparian woodlands in landscapes with different forest cover for the medium-sized Iberian carnivores, Biodivers. Conserv. 10, 1039–1049.CrossRefGoogle Scholar
  63. Virgós, E., Casanovas, J.G., 1997. Habitat selection of genet Genetta genetta in the mountains of central Spain, Acta Theriol. 42, 169–177.CrossRefGoogle Scholar
  64. Virgós, E., Casanovas, J.G., 1999. Environmental constraints at the edge of a species distribution, the Eurasian badger (Meles meles L.): a biogeographical approach, J. Biogeogr. 26, 559–564.CrossRefGoogle Scholar
  65. Virgós, E., Revilla, E., 2005. Métodos de studio de la abundancia del tejón (Meles meles). In: Virgós, E., Revilla, E., Mangas, J.G., Domingo-Roura, X. (Eds.), Ecología y conservación del tejón en ecosistemas mediterráneos. SECEM, Málaga, pp. 51–65.Google Scholar
  66. Virgós, E., Llorente, M., Cortés, Y., 1999. Geographical variation in Genet (Genetta genetta L.) diet: a literature review, Mammal Rev. 29, 117–126.CrossRefGoogle Scholar
  67. Virgós, E., Recio, M.R., Cortés, Y., 2000. Stone marten (Martes foina) use of different landscape types in the mountains of central Spain, Z. Säugetierk 65, 375–379.Google Scholar
  68. Virgós, E., Cabezas-Díaz, S., Malo, A., Lozano, J., López-Huertas, D., 2003. Factors shaping European rabbit abundance in continuous and fragmented populations of central Spain, Acta Theriol. 48, 113–122.CrossRefGoogle Scholar
  69. Virgós, E., Mangas, J.G., Blanco-Aguilar, J.A., Garrote, G., Almagro, N., Viso, R.P., 2004. Food habits of European badgers (Meles meles) along an altitudinal gradient of Mediterranean environments: a field test of the earthworm specialization hypothesis, Can. J. Zool. 82, 41–51.CrossRefGoogle Scholar
  70. Virgós, E., Revilla, E., Mangas, J.G., Domingo-Roura, X. (Eds.), 2005. Ecología y conservación del tejón en ecosistemas mediterráneos. SECEM, Málaga.Google Scholar
  71. Webbon, C, Baker, P.J., Harris, S., 2004. Faecal counting for monitoring changes in red fox numbers in rural Britain, J. Appl. Ecol. 41, 768–779.CrossRefGoogle Scholar
  72. Wilson, D.E., Mittermeier, R.A. (Eds.), 2009. Handbook of the Mammals of the World. Carnivores, vol. 1. Lynx Edicions, Barcelona.Google Scholar
  73. Wilson, G.J., Delahay, R.J., 2001. A review of the methods to estimate the abundance of terrestrial carnivores using field signs and observation, Wildl. Res. 28, 151–164.CrossRefGoogle Scholar
  74. Zielinski, W.J., Kucera, T.E., General Technical Report PSW–157 1995. American Marten, Fisher, Lynx and Wolverine: Survey Methods for Their Detection. US Department of Agriculture Forest Service, Pacific Southwest Research Station, Berkeley, CA.Google Scholar
  75. Zielinski, W.J., Stauffer, H.B., 1996. Monitoring Martes populations in California: survey design and power analysis, Ecol. Appl. 6, 1254–1267.CrossRefGoogle Scholar
  76. Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Jesús Carreras-Duro
    • 1
  • Marcos Moleón
    • 2
    Email author
  • José Miguel Barea-Azcón
    • 2
  • Elena Ballesteros-Duperón
    • 2
  • Emilio Virgós
    • 3
  1. 1.Departamento de Zoología y Antropología FísicaUniversidad Complutense de MadridMadridSpain
  2. 2.Agencia de Medio Ambiente y AguaConsejería de Medio Ambiente y Ordenación del Territorio, Junta de AndalucíaGranadaSpain
  3. 3.Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations